Back to Search Start Over

Targeting LC3 and Beclin-1 autophagy genes suppresses proliferation, survival, migration and invasion by inhibition of Cyclin-D1 and uPAR/Integrin β1/ Src signaling in triple negative breast cancer cells.

Authors :
Hamurcu Z
Delibaşı N
Geçene S
Şener EF
Dönmez-Altuntaş H
Özkul Y
Canatan H
Ozpolat B
Source :
Journal of cancer research and clinical oncology [J Cancer Res Clin Oncol] 2018 Mar; Vol. 144 (3), pp. 415-430. Date of Electronic Publication: 2017 Dec 29.
Publication Year :
2018

Abstract

Autophagy is a catabolic process for degrading dysfunctional proteins and organelles, and closely associated with cancer cell survival under therapeutic, metabolic stress, hypoxia, starvation and lack of growth factors, contributing to resistance to therapies. However, the role of autophagy in breast cancer cells is not well understood. In the present study, we investigated the role of autophagy in highly aggressive and metastatic triple negative breast cancer (TNBC) and non-metastatic breast cancer cells and demonstrated that the knockdown of autophagy-related genes (LC3 and Beclin-1) inhibited autophagy and significantly suppressed cell proliferation, colony formation, migration/invasion and induced apoptosis in MDA-MB-231 and BT-549 TNBC cells. Knockdown of LC3 and Beclin-1 led to inhibition of multiple proto-oncogenic signaling pathways, including cyclin D1, uPAR/integrin-β1/Src, and PARP1. In conclusion, our study suggests that LC3 and Beclin-1 are required for cell proliferation, survival, migration and invasion, and may contribute to tumor growth and progression of highly aggressive and metastatic TNBC cells and therapeutic targeting of autophagy genes may be a potential therapeutic strategy for TNBC in breast cancer.

Details

Language :
English
ISSN :
1432-1335
Volume :
144
Issue :
3
Database :
MEDLINE
Journal :
Journal of cancer research and clinical oncology
Publication Type :
Academic Journal
Accession number :
29288363
Full Text :
https://doi.org/10.1007/s00432-017-2557-5