Back to Search Start Over

The involvement of the pathway connecting the substantia nigra, the periaqueductal gray matter and the retrotrapezoid nucleus in breathing control in a rat model of Parkinson's disease.

Authors :
Lima JC
Oliveira LM
Botelho MT
Moreira TS
Takakura AC
Source :
Experimental neurology [Exp Neurol] 2018 Apr; Vol. 302, pp. 46-56. Date of Electronic Publication: 2018 Jan 04.
Publication Year :
2018

Abstract

Parkinson's disease (PD) is characterized by a reduction in the number of dopaminergic neurons of the substantia nigra (SNpc), accompanied by motor and non-motor deficiencies such as respiratory failure. Here, our aim was to investigate possible neuronal communications between the SNpc and chemoreceptor neurons within the retrotrapezoid nucleus (RTN), in order to explain neurodegeneration and the loss of breathing function in the 6-OHDA PD animal model. Male Wistar rats received tracer injections in the SNpc, RTN and periaqueductal gray (PAG) regions to investigate the projections between those regions. The results showed that neurons of the SNpc project to the RTN by an indirect pathway that goes through the PAG region. In different groups of rats, reductions in the density of neuronal markers (NeuN) and the number of catecholaminergic varicosities in PAG, as well as reductions in the number of CO <subscript>2</subscript> -activated PAG neurons with RTN projections, were observed in a 6-OHDA model of PD. Physiological experiments showed that inhibition of the PAG by bilateral injection of muscimol did not produce resting breathing disturbances but instead reduced genioglossus (GG <subscript>EMG</subscript> ) and abdominal (Abd <subscript>EMG</subscript> ) muscle activity amplitude induced by hypercapnia in control rats that were urethane-anesthetized, vagotomized, and artificially ventilated. However, in a model of PD, we found reductions in resting diaphragm muscle activity (Dia <subscript>EMG</subscript> ) and GG <subscript>EMG</subscript> frequencies, as well as in hypercapnia-induced Dia <subscript>EMG</subscript> , GG <subscript>EMG</subscript> and Abd <subscript>EMG</subscript> frequencies and GG <subscript>EMG</subscript> and Abd <subscript>EMG</subscript> amplitudes. Therefore, we can conclude that there is an indirect pathway between neurons of the SNpc and RTN that goes through the PAG and that there is a defect of this pathway in an animal model of PD.<br /> (Copyright © 2018 Elsevier Inc. All rights reserved.)

Details

Language :
English
ISSN :
1090-2430
Volume :
302
Database :
MEDLINE
Journal :
Experimental neurology
Publication Type :
Academic Journal
Accession number :
29305892
Full Text :
https://doi.org/10.1016/j.expneurol.2018.01.003