Back to Search Start Over

Evolution of pH buffers and water homeostasis in eukaryotes: homology between humans and Acanthamoeba proteins.

Authors :
Baig AM
Zohaib R
Tariq S
Ahmad HR
Source :
Future microbiology [Future Microbiol] 2018 Feb; Vol. 13, pp. 195-207. Date of Electronic Publication: 2018 Jan 11.
Publication Year :
2018

Abstract

Aim: This study intended to trace the evolution of acid-base buffers and water homeostasis in eukaryotes. Acanthamoeba castellanii  was selected as a model unicellular eukaryote for this purpose. Homologies of proteins involved in pH and water regulatory mechanisms at cellular levels were compared between humans and A. castellanii.<br />Materials & Methods: Amino acid sequence homology, structural homology, 3D modeling and docking prediction were done to show the extent of similarities between carbonic anhydrase 1 (CA1), aquaporin (AQP), band-3 protein and H <superscript>+</superscript> pump. Experimental assays were done with acetazolamide (AZM), brinzolamide and mannitol to observe their effects on the trophozoites of  A. castellanii.<br />Results: The human CA1, AQP, band-3 protein and H <superscript>+</superscript> -transport proteins revealed similar proteins in Acanthamoeba. Docking showed the binding of AZM on amoebal AQP-like proteins.  Acanthamoeba showed transient shape changes and encystation at differential doses of brinzolamide, mannitol and AZM.  Conclusion: Water and pH regulating adapter proteins in Acanthamoeba and humans show significant homology, these mechanisms evolved early in the primitive unicellular eukaryotes and have remained conserved in multicellular eukaryotes.

Details

Language :
English
ISSN :
1746-0921
Volume :
13
Database :
MEDLINE
Journal :
Future microbiology
Publication Type :
Academic Journal
Accession number :
29322818
Full Text :
https://doi.org/10.2217/fmb-2017-0116