Back to Search
Start Over
Osteoblast-like MC3T3-E1 Cells Prefer Glycolysis for ATP Production but Adipocyte-like 3T3-L1 Cells Prefer Oxidative Phosphorylation.
- Source :
-
Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research [J Bone Miner Res] 2018 Jun; Vol. 33 (6), pp. 1052-1065. Date of Electronic Publication: 2018 Mar 30. - Publication Year :
- 2018
-
Abstract
- Mesenchymal stromal cells (MSCs) are early progenitors that can differentiate into osteoblasts, chondrocytes, and adipocytes. We hypothesized that osteoblasts and adipocytes utilize distinct bioenergetic pathways during MSC differentiation. To test this hypothesis, we compared the bioenergetic profiles of preosteoblast MC3T3-E1 cells and calvarial osteoblasts with preadipocyte 3T3L1 cells, before and after differentiation. Differentiated MC3T3-E1 osteoblasts met adenosine triphosphate (ATP) demand mainly by glycolysis with minimal reserve glycolytic capacity, whereas nondifferentiated cells generated ATP through oxidative phosphorylation. A marked Crabtree effect (acute suppression of respiration by addition of glucose, observed in both MC3T3-E1 and calvarial osteoblasts) and smaller mitochondrial membrane potential in the differentiated osteoblasts, particularly those incubated at high glucose concentrations, indicated a suppression of oxidative phosphorylation compared with nondifferentiated osteoblasts. In contrast, both nondifferentiated and differentiated 3T3-L1 adipocytes met ATP demand primarily by oxidative phosphorylation despite a large unused reserve glycolytic capacity. In sum, we show that nondifferentiated precursor cells prefer to use oxidative phosphorylation to generate ATP; when they differentiate to osteoblasts, they gain a strong preference for glycolytic ATP generation, but when they differentiate to adipocytes, they retain the strong preference for oxidative phosphorylation. Unique metabolic programming in mesenchymal progenitor cells may influence cell fate and ultimately determine the degree of bone formation and/or the development of marrow adiposity. © 2018 American Society for Bone and Mineral Research.<br /> (© 2018 American Society for Bone and Mineral Research.)
- Subjects :
- 3T3-L1 Cells
Adipocytes cytology
Animals
Cell Differentiation
Cell Respiration
Energy Metabolism
Gene Expression Regulation
Glucose metabolism
Lactates metabolism
Membrane Potential, Mitochondrial
Mice
Mitochondria metabolism
Osteoblasts cytology
Adenosine Triphosphate biosynthesis
Adipocytes metabolism
Glycolysis
Osteoblasts metabolism
Oxidative Phosphorylation
Subjects
Details
- Language :
- English
- ISSN :
- 1523-4681
- Volume :
- 33
- Issue :
- 6
- Database :
- MEDLINE
- Journal :
- Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research
- Publication Type :
- Academic Journal
- Accession number :
- 29342317
- Full Text :
- https://doi.org/10.1002/jbmr.3390