Back to Search
Start Over
Ultrafine and Fine Particle Number and Surface Area Concentrations and Daily Cause-Specific Mortality in the Ruhr Area, Germany, 2009-2014.
- Source :
-
Environmental health perspectives [Environ Health Perspect] 2018 Feb 15; Vol. 126 (2), pp. 027008. Date of Electronic Publication: 2018 Feb 15. - Publication Year :
- 2018
-
Abstract
- Background: Although epidemiologic studies have shown associations between particle mass and daily mortality, evidence on other particle metrics is weak.<br />Objectives: We investigated associations of size-specific particle number concentration (PNC) and lung-deposited particle surface area concentration (PSC) with cause-specific daily mortality in contrast to PM <subscript>10</subscript> .<br />Methods: We used time-series data (March 2009-December 2014) on daily natural, cardiovascular, and respiratory mortality (NM, CVM, RM) of three adjacent cities in the Ruhr Area, Germany. Size-specific PNC (electric mobility diameter of 13.3-750 nm), PSC, and PM <subscript>10</subscript> were measured at an urban background monitoring site. In single- and multipollutant Poisson regression models, we estimated percentage change (95% confidence interval) [% (95% CI)] in mortality per interquartile range (IQR) in exposure at single-day (0-7) and aggregated lags (0-1, 2-3, 4-7), accounting for time trend, temperature, humidity, day of week, holidays, period of seasonal population decrease, and influenza.<br />Results: PNC <subscript>100-750</subscript> and PSC were highly correlated and had similar immediate (lag0-1) and delayed (lag4-7) associations with NM and CVM, for example, 1.12% (95% CI: 0.09, 2.33) and 1.56% (95% CI: 0.22, 2.92) higher NM with IQR increases in PNC <subscript>100-750</subscript> at lag0-1 and lag4-7, respectfully, which were slightly stronger then associations with IQR increases in PM <subscript>10</subscript> . Positive associations between PNC and NM were strongest for accumulation mode particles (PNC 100-500 nm), and for larger UFPs (PNC 50-100 nm). Associations between NM and PNC <subscript><100</subscript> changed little after adjustment for O <subscript>3</subscript> or PM <subscript>10</subscript> , but were more sensitive to adjustment for NO <subscript>2</subscript> .<br />Conclusion: Size-specific PNC (50-500 nm) and lung-deposited PSC were associated with natural and cardiovascular mortality in the Ruhr Area. Although associations were similar to those estimated for an IQR increase in PM <subscript>10</subscript> , particle number size distributions can be linked to emission sources, and thus may be more informative for potential public health interventions. Moreover, PSC could be used as an alternative metric that integrates particle size distribution as well as deposition efficiency. https://doi.org/10.1289/EHP2054.
- Subjects :
- Air Pollutants toxicity
Air Pollution adverse effects
Air Pollution analysis
Cardiovascular Diseases mortality
Cause of Death
Environmental Exposure adverse effects
Environmental Exposure analysis
Germany epidemiology
Humans
Particle Size
Particulate Matter toxicity
Respiratory Tract Diseases mortality
Seasons
Time Factors
Air Pollutants analysis
Cardiovascular Diseases epidemiology
Particulate Matter analysis
Respiratory Tract Diseases epidemiology
Subjects
Details
- Language :
- English
- ISSN :
- 1552-9924
- Volume :
- 126
- Issue :
- 2
- Database :
- MEDLINE
- Journal :
- Environmental health perspectives
- Publication Type :
- Academic Journal
- Accession number :
- 29467106
- Full Text :
- https://doi.org/10.1289/EHP2054