Back to Search Start Over

Automated C. elegans embryo alignments reveal brain neuropil position invariance despite lax cell body placement.

Authors :
Insley P
Shaham S
Source :
PloS one [PLoS One] 2018 Mar 28; Vol. 13 (3), pp. e0194861. Date of Electronic Publication: 2018 Mar 28 (Print Publication: 2018).
Publication Year :
2018

Abstract

The Caenorhabditis elegans cell lineage is nearly invariant. Whether this stereotyped cell-division pattern promotes reproducibility in cell shapes/positions is not generally known, as manual spatiotemporal cell-shape/position alignments are labor-intensive, and fully-automated methods are not described. Here, we report automated algorithms for spatiotemporal alignments of C. elegans embryos from pre-morphogenesis to motor-activity initiation. We use sparsely-labeled green-fluorescent nuclei and a pan-nuclear red-fluorescent reporter to register consecutive imaging time points and compare embryos. Using our method, we monitor early assembly of the nerve-ring (NR) brain neuropil. While NR pioneer neurons exhibit reproducible growth kinetics and axon positions, cell-body placements are variable. Thus, pioneer-neuron axon locations, but not cell-body positions, are under selection. We also show that anterior NR displacement in cam-1/ROR Wnt-receptor mutants is not an early NR assembly defect. Our results demonstrate the utility of automated spatiotemporal alignments of C. elegans embryos, and uncover key principles guiding nervous-system development in this animal.

Details

Language :
English
ISSN :
1932-6203
Volume :
13
Issue :
3
Database :
MEDLINE
Journal :
PloS one
Publication Type :
Academic Journal
Accession number :
29590193
Full Text :
https://doi.org/10.1371/journal.pone.0194861