Back to Search Start Over

Assessing the influence of humic acids on the weathering of galena and its environmental implications.

Authors :
Liu Q
Li H
Jin G
Zheng K
Wang L
Source :
Ecotoxicology and environmental safety [Ecotoxicol Environ Saf] 2018 Aug 30; Vol. 158, pp. 230-238. Date of Electronic Publication: 2018 Apr 27.
Publication Year :
2018

Abstract

Galena weathering often occurs in nature and releases metal ions during the process. Humic acid (HA), a critical particle of natural organic matter, binds metal ions, thus affecting metal transfer and transformation. In this work, an electrochemical method combined with spectroscopic techniques was adopted to investigate the interfacial processes involved in galena weathering under acidic and alkaline conditions, as well as in the presence of HA. The results show that the initial step of galena weathering involved the transformation Pb <superscript>2+</superscript> and S°, regardless of whether the solution was acidic or alkaline. Under acidic conditions, S° and Pb <superscript>2+</superscript> further transform into anglesite, and HA adsorbs on the galena surface, inhibiting the transformation of sulfur. HA and Pb (II) ions form bridging complexes. Under alkaline conditions without HA, the sulfur produced undergoes no transformation, whereas Pb <superscript>2+</superscript> will transform into PbO. The presence of HA changes the galena weathering mechanism via ionization effect, and Pb <superscript>2+</superscript> is ultimately converted into anglesite. Higher acidity in acidic conditions or higher alkalinity in alkaline conditions causes galena corrosion when the electrolyte does not contain HA. Conversely, higher pH always accelerates galena corrosion when the electrolyte contains HA, whether the electrolyte is acidic or alkaline. At the same acidity/alkalinity, increasing the concentration of HA inhibits galena weathering. Galena will release 134.7 g m <superscript>-2</superscript> ·y <superscript>-1</superscript> Pb <superscript>2+</superscript> to solution at pH 2.5, and the amount decreases to 28.09 g m <superscript>-2</superscript> ·y <superscript>-1</superscript> in the presence of 1000 mg/L HA. This study provides an in situ electrochemical method for the assessment of galena weathering.<br /> (Copyright © 2018 Elsevier Inc. All rights reserved.)

Details

Language :
English
ISSN :
1090-2414
Volume :
158
Database :
MEDLINE
Journal :
Ecotoxicology and environmental safety
Publication Type :
Academic Journal
Accession number :
29709760
Full Text :
https://doi.org/10.1016/j.ecoenv.2018.04.030