Back to Search Start Over

[Projected changes in vegetation net primary productivity of grassland in Inner Mongolia, China during 2011-2050.]

Authors :
Guo LH
Hao CY
Wu SH
Gao JB
Zhao DS
Source :
Ying yong sheng tai xue bao = The journal of applied ecology [Ying Yong Sheng Tai Xue Bao] 2016 Mar; Vol. 27 (3), pp. 803-814.
Publication Year :
2016

Abstract

In this paper, the CENTURY-based modeling system (complying CENTURY model from a site-based model into spatial model) after being systematically calibrated was used to investigate future climate change under Representative Concentration Pathways Scenario (RCP, 4.5 and 8.5) driven spatio-temporal changes in vegetation net primary productivity (NPP) of Inner Mongolia grassland during 2011-2050. The simulation showed that Inner Mongolia grassland NPP would greatly decrease with a rate of 0.57 g C·m <superscript>-2</superscript> ·a <superscript>-1</superscript> (RCP4.5) and 0.89 g C·m <superscript>-2</superscript> ·a <superscript>-1</superscript> (RCP8.5). NPP of Inner Mongolia grassland appeared to decrease by approximately 11.6% (2020s), 12.0% (2030s) and 18.0% (2040s) under the RCP4.5 in relation to baseline period, while its reduction could be exacerbated as 23.8% (2020s), 21.2% (2030s) and 30.1% (2040s) in the RCP8.5 at the regional scale. In addition, grassland NPP induced by future climate changes varied between different grassland types and times, strongly correlating with climate scenario. Even for the RCP4.5, however, a great majority (89.7%) of the grassland exhibited a decreasing trend in annual NPP, with 15.6% of the area decreasing by more than 20% compared with the baseline term. Therefore, although future precipitation rising could benefit vegetation growth, it might be still not enough to compensate for the negative effect of warming on the NPP of Inner Mongolia grassland, and the sustainable development of grassland resources might face a greater challenge.

Details

Language :
Chinese
ISSN :
1001-9332
Volume :
27
Issue :
3
Database :
MEDLINE
Journal :
Ying yong sheng tai xue bao = The journal of applied ecology
Publication Type :
Academic Journal
Accession number :
29726185
Full Text :
https://doi.org/10.13287/j.1001-9332.201603.011