Back to Search Start Over

Binding of Free and Immune Complex-Associated Hepatitis C Virus to Erythrocytes Is Mediated by the Complement System.

Authors :
Salam KA
Wang RY
Grandinetti T
De Giorgi V
Alter HJ
Allison RD
Source :
Hepatology (Baltimore, Md.) [Hepatology] 2018 Dec; Vol. 68 (6), pp. 2118-2129. Date of Electronic Publication: 2018 Nov 01.
Publication Year :
2018

Abstract

Erythrocytes bind circulating immune complexes (ICs) and facilitate IC clearance from the circulation. Chronic hepatitis C virus (HCV) infection is associated with IC-related disorders. In this study, we investigated the kinetics and mechanism of HCV and HCV-IC binding to and dissociation from erythrocytes. Cell culture-produced HCV was mixed with erythrocytes from healthy blood donors, and erythrocyte-associated virus particles were quantified. Purified complement proteins, complement-depleted serum, and complement receptor antibodies were used to investigate complement-mediated HCV-erythrocyte binding. Purified HCV-specific immunoglobulin G (IgG) from a chronic HCV-infected patient was used to study complement-mediated HCV-IC/erythrocyte binding. Binding of HCV to erythrocytes increased 200- to 1,000-fold after adding complement active human serum in the absence of antibody. Opsonization of free HCV occurred within 10 minutes, and peak binding to erythrocytes was observed at 20-30 minutes. Complement protein C1 was required for binding, whereas C2, C3, and C4 significantly enhanced binding. Complement receptor 1 (CR1, CD35) antibodies blocked the binding of HCV to erythrocytes isolated from chronically infected HCV patients and healthy blood donors. HCV-ICs significantly enhanced complement-mediated binding to erythrocytes compared to unbound HCV. Dissociation of complement-opsonized HCV from erythrocytes depended on the presence of Factor I. HCV released by Factor I bound preferentially to CD19 <superscript>+</superscript> B cells compared to other leukocytes. Conclusion: These results demonstrate that complement mediates the binding of free and IC-associated HCV to CR1 on erythrocytes and provide a mechanistic rationale for investigating the differential phenotypic expression of HCV-IC-related disease.<br /> (Published 2018. This article is a U.S. Government work and is in the public domain in the USA.)

Details

Language :
English
ISSN :
1527-3350
Volume :
68
Issue :
6
Database :
MEDLINE
Journal :
Hepatology (Baltimore, Md.)
Publication Type :
Academic Journal
Accession number :
29742812
Full Text :
https://doi.org/10.1002/hep.30087