Back to Search Start Over

High-Throughput Screening Enhances Kidney Organoid Differentiation from Human Pluripotent Stem Cells and Enables Automated Multidimensional Phenotyping.

Authors :
Czerniecki SM
Cruz NM
Harder JL
Menon R
Annis J
Otto EA
Gulieva RE
Islas LV
Kim YK
Tran LM
Martins TJ
Pippin JW
Fu H
Kretzler M
Shankland SJ
Himmelfarb J
Moon RT
Paragas N
Freedman BS
Source :
Cell stem cell [Cell Stem Cell] 2018 Jun 01; Vol. 22 (6), pp. 929-940.e4. Date of Electronic Publication: 2018 May 17.
Publication Year :
2018

Abstract

Organoids derived from human pluripotent stem cells are a potentially powerful tool for high-throughput screening (HTS), but the complexity of organoid cultures poses a significant challenge for miniaturization and automation. Here, we present a fully automated, HTS-compatible platform for enhanced differentiation and phenotyping of human kidney organoids. The entire 21-day protocol, from plating to differentiation to analysis, can be performed automatically by liquid-handling robots, or alternatively by manual pipetting. High-content imaging analysis reveals both dose-dependent and threshold effects during organoid differentiation. Immunofluorescence and single-cell RNA sequencing identify previously undetected parietal, interstitial, and partially differentiated compartments within organoids and define conditions that greatly expand the vascular endothelium. Chemical modulation of toxicity and disease phenotypes can be quantified for safety and efficacy prediction. Screening in gene-edited organoids in this system reveals an unexpected role for myosin in polycystic kidney disease. Organoids in HTS formats thus establish an attractive platform for multidimensional phenotypic screening.<br /> (Copyright © 2018 Elsevier Inc. All rights reserved.)

Details

Language :
English
ISSN :
1875-9777
Volume :
22
Issue :
6
Database :
MEDLINE
Journal :
Cell stem cell
Publication Type :
Academic Journal
Accession number :
29779890
Full Text :
https://doi.org/10.1016/j.stem.2018.04.022