Back to Search
Start Over
Beyond Fullerenes: Indacenodithiophene-Based Organic Charge-Transport Layer toward Upscaling of Low-Cost Perovskite Solar Cells.
- Source :
-
ACS applied materials & interfaces [ACS Appl Mater Interfaces] 2018 Jul 05; Vol. 10 (26), pp. 22143-22155. Date of Electronic Publication: 2018 Jun 25. - Publication Year :
- 2018
-
Abstract
- Phenyl-C <subscript>61</subscript> -butyric acid methyl ester (PCBM) is universally used as the electron-transport layer (ETL) in the low-cost inverted planar structure of perovskite solar cells (PeSCs). PCBM brings tremendous challenges in upscaling of PeSCs using industry-relevant methods due to its aggregation behavior, which undermines the power conversion efficiency and stability. Herein, we highlight these, seldom reported, challenges with PCBM. Furthermore, we investigate the potential of nonfullerene indacenodithiophene (IDT)-based molecules by employing a commercially available variant, 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3- d:2',3'- d']- s-indaceno[1,2- b:5,6- b'] dithiophene (ITIC), as a PCBM replacement in ambient-processed PeSCs. Films fabrication by laboratory-based spin-coating and industry-relevant slot-die coating methods are compared. Although similar power-conversion efficiencies are achieved with both types of ETL in a simple device structure fabricated by spin-coating, the nanofibriller morphology of ITIC compared to the aggregated morphology of PCBM films enables improved mechanical integrity and stability of ITIC devices. Upon slot-die coating, the aggregation of PCBM is exacerbated, leading to significantly lower power-conversion efficiency of devices than spin-coated PCBM as well as slot-die-coated ITIC devices. Our results clearly indicate that IDT-based molecules have great potential as an ETL in PeSCs, offering superior properties and upscaling compatibility than PCBM. Thus, we present a short summary of recently emerged nonfullerene IDT-based molecules from the field of organic solar cells and discuss their scope in PeSCs as electron or hole-transport layer.
Details
- Language :
- English
- ISSN :
- 1944-8252
- Volume :
- 10
- Issue :
- 26
- Database :
- MEDLINE
- Journal :
- ACS applied materials & interfaces
- Publication Type :
- Academic Journal
- Accession number :
- 29877699
- Full Text :
- https://doi.org/10.1021/acsami.8b04861