Back to Search
Start Over
Superflexible Multifunctional Polyvinylpolydimethylsiloxane-Based Aerogels as Efficient Absorbents, Thermal Superinsulators, and Strain Sensors.
- Source :
-
Angewandte Chemie (International ed. in English) [Angew Chem Int Ed Engl] 2018 Jul 26; Vol. 57 (31), pp. 9722-9727. Date of Electronic Publication: 2018 Jul 03. - Publication Year :
- 2018
-
Abstract
- Aerogels are porous materials but show poor mechanical properties and limited functionality, which significantly restrict their practical applications. Preparation of highly bendable and processable aerogels with multifunctionality remains a challenge. Herein we report unprecedented superflexible aerogels based on polyvinylpolydimethylsiloxane (PVPDMS) networks, PVPDMS/polyvinylpolymethylsiloxane (PVPMS) copolymer networks, and PVPDMS/PVPMS/graphene nanocomposites by a facile radical polymerization/hydrolytic polycondensation strategy and ambient pressure drying or freeze drying. The aerogels have a doubly cross-linked organic-inorganic network structure consisting of flexible polydimethylsiloxanes and hydrocarbon chains with tunable cross-linking density, tunable pore size and bulk density. They have a high hydrophobicity and superflexibility and combine selective absorption, efficient separation of oil and water, thermal superinsulation, and strain sensing.<br /> (© 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.)
Details
- Language :
- English
- ISSN :
- 1521-3773
- Volume :
- 57
- Issue :
- 31
- Database :
- MEDLINE
- Journal :
- Angewandte Chemie (International ed. in English)
- Publication Type :
- Academic Journal
- Accession number :
- 29957853
- Full Text :
- https://doi.org/10.1002/anie.201804559