Back to Search Start Over

A revised airway epithelial hierarchy includes CFTR-expressing ionocytes.

Authors :
Montoro DT
Haber AL
Biton M
Vinarsky V
Lin B
Birket SE
Yuan F
Chen S
Leung HM
Villoria J
Rogel N
Burgin G
Tsankov AM
Waghray A
Slyper M
Waldman J
Nguyen L
Dionne D
Rozenblatt-Rosen O
Tata PR
Mou H
Shivaraju M
Bihler H
Mense M
Tearney GJ
Rowe SM
Engelhardt JF
Regev A
Rajagopal J
Source :
Nature [Nature] 2018 Aug; Vol. 560 (7718), pp. 319-324. Date of Electronic Publication: 2018 Aug 01.
Publication Year :
2018

Abstract

The airways of the lung are the primary sites of disease in asthma and cystic fibrosis. Here we study the cellular composition and hierarchy of the mouse tracheal epithelium by single-cell RNA-sequencing (scRNA-seq) and in vivo lineage tracing. We identify a rare cell type, the Foxi1 <superscript>+</superscript> pulmonary ionocyte; functional variations in club cells based on their location; a distinct cell type in high turnover squamous epithelial structures that we term 'hillocks'; and disease-relevant subsets of tuft and goblet cells. We developed 'pulse-seq', combining scRNA-seq and lineage tracing, to show that tuft, neuroendocrine and ionocyte cells are continually and directly replenished by basal progenitor cells. Ionocytes are the major source of transcripts of the cystic fibrosis transmembrane conductance regulator in both mouse (Cftr) and human (CFTR). Knockout of Foxi1 in mouse ionocytes causes loss of Cftr expression and disrupts airway fluid and mucus physiology, phenotypes that are characteristic of cystic fibrosis. By associating cell-type-specific expression programs with key disease genes, we establish a new cellular narrative for airways disease.

Details

Language :
English
ISSN :
1476-4687
Volume :
560
Issue :
7718
Database :
MEDLINE
Journal :
Nature
Publication Type :
Academic Journal
Accession number :
30069044
Full Text :
https://doi.org/10.1038/s41586-018-0393-7