Back to Search Start Over

Multimodal neuromarkers in schizophrenia via cognition-guided MRI fusion.

Authors :
Sui J
Qi S
van Erp TGM
Bustillo J
Jiang R
Lin D
Turner JA
Damaraju E
Mayer AR
Cui Y
Fu Z
Du Y
Chen J
Potkin SG
Preda A
Mathalon DH
Ford JM
Voyvodic J
Mueller BA
Belger A
McEwen SC
O'Leary DS
McMahon A
Jiang T
Calhoun VD
Source :
Nature communications [Nat Commun] 2018 Aug 02; Vol. 9 (1), pp. 3028. Date of Electronic Publication: 2018 Aug 02.
Publication Year :
2018

Abstract

Cognitive impairment is a feature of many psychiatric diseases, including schizophrenia. Here we aim to identify multimodal biomarkers for quantifying and predicting cognitive performance in individuals with schizophrenia and healthy controls. A supervised learning strategy is used to guide three-way multimodal magnetic resonance imaging (MRI) fusion in two independent cohorts including both healthy individuals and individuals with schizophrenia using multiple cognitive domain scores. Results highlight the salience network (gray matter, GM), corpus callosum (fractional anisotropy, FA), central executive and default-mode networks (fractional amplitude of low-frequency fluctuation, fALFF) as modality-specific biomarkers of generalized cognition. FALFF features are found to be more sensitive to cognitive domain differences, while the salience network in GM and corpus callosum in FA are highly consistent and predictive of multiple cognitive domains. These modality-specific brain regions define-in three separate cohorts-promising co-varying multimodal signatures that can be used as predictors of multi-domain cognition.

Details

Language :
English
ISSN :
2041-1723
Volume :
9
Issue :
1
Database :
MEDLINE
Journal :
Nature communications
Publication Type :
Academic Journal
Accession number :
30072715
Full Text :
https://doi.org/10.1038/s41467-018-05432-w