Back to Search Start Over

Protein kinase Cε targets respiratory chain and mitochondrial membrane potential but not F 0 F 1 -ATPase in renal cells injured by oxidant.

Authors :
Nowak G
Bakajsova-Takacsova D
Source :
Journal of cellular biochemistry [J Cell Biochem] 2018 Nov; Vol. 119 (11), pp. 9394-9407. Date of Electronic Publication: 2018 Aug 03.
Publication Year :
2018

Abstract

We have previously shown that protein kinase Cε (PKCε) is involved in mitochondrial dysfunction in renal proximal tubular cells (RPTC). This study examined mitochondrial targets of active PKCε in RPTC injured by the model oxidant tert-butyl hydroperoxide (TBHP). TBHP exposure augmented the levels of phosphorylated (active) PKCε in mitochondria, which suggested translocation of PKCε to mitochondria after oxidant exposure. Oxidant injury decreased state 3 respiration, adenosine triphosphate (ATP) production, ATP content, and complex I activity. Further, TBHP exposure increased ΔΨ <subscript>m</subscript> and production of reactive oxygen species (ROS), and induced mitochondrial fragmentation and RPTC death. PKCε activation by overexpressing constitutively active PKCε exacerbated decreases in state 3 respiration, complex I activity, ATP content, and augmented RPTC death. In contrast, inhibition of PKCε by overexpressing dnPKCε mutant restored state 3 respiration, respiratory control ratio, complex I activity, ΔΨ <subscript>m</subscript> , and ATP production and content, but did not prevent decreases in F <subscript>0</subscript> F <subscript>1</subscript> -ATPase activity. Inhibition of PKCε prevented oxidant-induced production of ROS and mitochondrial fragmentation, and reduced RPTC death. We conclude that activation of PKCε mediates: (a) oxidant-induced changes in ΔΨ <subscript>m</subscript> , decreases in mitochondrial respiration, complex I activity, and ATP content; (b) mitochondrial fragmentation; and (c) RPTC death. In contrast, oxidant-induced inhibition of F <subscript>0</subscript> F <subscript>1</subscript> -ATPase activity is not mediated by PKCε. These results show that, in contrast to the protective effects of PKCε in the heart, PKCε activation is detrimental to mitochondrial function and viability in RPTC and mediates oxidant-induced injury.<br /> (© 2018 Wiley Periodicals, Inc.)

Details

Language :
English
ISSN :
1097-4644
Volume :
119
Issue :
11
Database :
MEDLINE
Journal :
Journal of cellular biochemistry
Publication Type :
Academic Journal
Accession number :
30074270
Full Text :
https://doi.org/10.1002/jcb.27256