Back to Search Start Over

[Surface Enhanced Spectroscopy Based on Lab-on-a-Chip Technology and Its Applications in Analytical Science].

Authors :
Zhang H
Gong L
Xie FY
Zhang WH
Chen QL
Chen J
Source :
Guang pu xue yu guang pu fen xi = Guang pu [Guang Pu Xue Yu Guang Pu Fen Xi] 2017 Feb; Vol. 37 (2), pp. 350-5.
Publication Year :
2017

Abstract

In integrating lab-on-a-chip (LOC) technologies facilitated with a series of microfluidic units, microfluidic channels, with substrates put into metal nanoparticles, especially when gold, silver or copper nanoparticles, were prepared and pumped into μl or nl analytes. This sample preparation methods have important significance in real time, in-situ trace- or processing reaction analysis jointing with surface enhanced spectroscopies (SES).This combined technologies would integrate the mertis of the two technologies of lab-on-a-chip LOC and SES. LOC has the advantages of minuming the amount of analytes and stable test environments for step by step processing operations to achieve screening samples, segmentating, real-time detecting and so on, whiel SES has the characteristics of fast spectral response, high sensitivemess and selectivness,and in-situ detectoring. On the base of Drude medol and appropriate boundary conditions, external electric field induces localizing plasmon oscillation of valence electron of metal nano particles, then which derivates the mechannisms of resonant localized suface plasmon enhancement and electromagnetic enhancement mechanism of the surface enhanced Raman scattering by dipole polarization. In this paper, combined LOC and localized surface plasmon resonance technologies analysed in biological, pharmaceutical and food safety fileds with additional channels prompting detecting efficiencies and the limits of trace detections further being broken out. This paper also summarizes the application of chip laboratory technology in the fields of public safety testing, biomedical medicine detecting, electrochemical or biological sensors with surface enhanced Raman spectroscopieswhich were capable of high sensitivitiness and molecular spectral fingerprint. LOC technologies have gotten great develoment in their respective fileds, especially combinning with 3D fingerprint technologies, which could precisely control the sizes of 3D structures and high-accuracy manufacture 3D structures according to the special purpose. LSPR and SERS have been more maturing in some applications of near filed imaging and Tip-enhanced Raman spectroscopies (TERS), which have the ability to break through the optical limit of conventional microscopes and do that the width and depth of the SES technologies have been greatly extended in the micro and nano scales. So The jointed technologies would have a bright prospects in the practical applications for the qualitative and semi quantitative determination of trace analysis.

Details

Language :
Chinese
ISSN :
1000-0593
Volume :
37
Issue :
2
Database :
MEDLINE
Journal :
Guang pu xue yu guang pu fen xi = Guang pu
Publication Type :
Academic Journal
Accession number :
30264960