Back to Search Start Over

The impact of the 2015/2016 El Niño on global photosynthesis using satellite remote sensing.

Authors :
Luo X
Keenan TF
Fisher JB
Jiménez-Muñoz JC
Chen JM
Jiang C
Ju W
Perakalapudi NV
Ryu Y
Tadić JM
Source :
Philosophical transactions of the Royal Society of London. Series B, Biological sciences [Philos Trans R Soc Lond B Biol Sci] 2018 Oct 08; Vol. 373 (1760). Date of Electronic Publication: 2018 Oct 08.
Publication Year :
2018

Abstract

The El Niño-Southern Oscillation exerts a large influence on global climate regimes and on the global carbon cycle. Although El Niño is known to be associated with a reduction of the global total land carbon sink, results based on prognostic models or measurements disagree over the relative contribution of photosynthesis to the reduced sink. Here, we provide an independent remote sensing-based analysis on the impact of the 2015-2016 El Niño on global photosynthesis using six global satellite-based photosynthesis products and a global solar-induced fluorescence (SIF) dataset. An ensemble of satellite-based photosynthesis products showed a negative anomaly of -0.7 ± 1.2 PgC in 2015, but a slight positive anomaly of 0.05 ± 0.89 PgC in 2016, which when combined with observations of the growth rate of atmospheric carbon dioxide concentrations suggests that the reduction of the land residual sink was likely dominated by photosynthesis in 2015 but by respiration in 2016. The six satellite-based products unanimously identified a major photosynthesis reduction of -1.1 ± 0.52 PgC from savannahs in 2015 and 2016, followed by a highly uncertain reduction of -0.22 ± 0.98 PgC from rainforests. Vegetation in the Northern Hemisphere enhanced photosynthesis before and after the peak El Niño, especially in grasslands (0.33 ± 0.13 PgC). The patterns of satellite-based photosynthesis ensemble mean were corroborated by SIF, except in rainforests and South America, where the anomalies of satellite-based photosynthesis products also diverged the most. We found the inter-model variation of photosynthesis estimates was strongly related to the discrepancy between moisture forcings for models. These results highlight the importance of considering multiple photosynthesis proxies when assessing responses to climatic anomalies.This article is part of a discussion meeting issue 'The impact of the 2015/2016 El Niño on the terrestrial tropical carbon cycle: patterns, mechanisms and implications'.<br /> (© 2018 The Author(s).)

Details

Language :
English
ISSN :
1471-2970
Volume :
373
Issue :
1760
Database :
MEDLINE
Journal :
Philosophical transactions of the Royal Society of London. Series B, Biological sciences
Publication Type :
Academic Journal
Accession number :
30297474
Full Text :
https://doi.org/10.1098/rstb.2017.0409