Back to Search
Start Over
Multiplexed, high-throughput measurements of cell contraction and endothelial barrier function.
- Source :
-
Laboratory investigation; a journal of technical methods and pathology [Lab Invest] 2019 Jan; Vol. 99 (1), pp. 138-145. Date of Electronic Publication: 2018 Oct 11. - Publication Year :
- 2019
-
Abstract
- Vascular leakage, protein exudation, and edema formation are events commonly triggered by inflammation and facilitated by gaps that form between adjacent endothelial cells (ECs) of the vasculature. In such paracellular gap formation, the role of EC contraction is widely implicated, and even therapeutically targeted. However, related measurement approaches remain slow, tedious, and complex to perform. Here, we have developed a multiplexed, high-throughput screen to simultaneously quantify paracellular gaps, EC contractile forces, and to visualize F-actin stress fibers, and VE-cadherin. As proof-of-principle, we examined barrier-protective mechanisms of the Rho-associated kinase inhibitor, Y-27632, and the canonical agonist of the Tie2 receptor, Angiopoietin-1 (Angpt-1). Y-27632 reduced EC contraction and actin stress fiber formation, whereas Angpt-1 did not. Yet both agents reduced thrombin-, LPS-, and TNFα-induced paracellular gap formation. This unexpected result suggests that Angpt-1 can achieve barrier defense without reducing EC contraction, a mechanism that has not been previously described. This insight was enabled by the multiplex nature of the force-based platform. The high-throughput format we describe should accelerate both mechanistic studies and the screening of pharmacological modulators of endothelial barrier function.
- Subjects :
- Amides
Angiopoietin-1
Antigens, CD metabolism
Cadherins metabolism
Endothelium, Vascular physiology
Humans
Intercellular Junctions physiology
Microscopy, Fluorescence
Permeability
Primary Cell Culture
Pyridines
Actin Cytoskeleton physiology
Endothelial Cells physiology
High-Throughput Screening Assays methods
Subjects
Details
- Language :
- English
- ISSN :
- 1530-0307
- Volume :
- 99
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- Laboratory investigation; a journal of technical methods and pathology
- Publication Type :
- Academic Journal
- Accession number :
- 30310180
- Full Text :
- https://doi.org/10.1038/s41374-018-0136-2