Back to Search Start Over

Comparative systematics and phylogeography of Quercus Section Cerris in western Eurasia: inferences from plastid and nuclear DNA variation.

Authors :
Simeone MC
Cardoni S
Piredda R
Imperatori F
Avishai M
Grimm GW
Denk T
Source :
PeerJ [PeerJ] 2018 Oct 17; Vol. 6, pp. e5793. Date of Electronic Publication: 2018 Oct 17 (Print Publication: 2018).
Publication Year :
2018

Abstract

Oaks ( Quercus ) comprise more than 400 species worldwide and centres of diversity for most sections lie in the Americas and East/Southeast Asia. The only exception is the Eurasian sect. Cerris that comprises about 15 species, most of which are confined to western Eurasia. This section has not been comprehensively studied using molecular tools. Here, we assess species diversity and provide a first comprehensive taxonomic and phylogeographic scheme of western Eurasian members of sect. Cerris using plastid ( trnH-psbA ) and nuclear (5S-IGS) DNA variation with a dense intra-specific and geographic sampling. Chloroplast haplotypes primarily reflected phylogeographic patterns originating from interspecific cytoplasmic gene flow within sect. Cerris and its sister section Ilex . We identified two widespread and ancestral haplotypes, and locally restricted derived variants. Signatures shared with Mediterranean species of sect. Ilex , but not with the East Asian Cerris oaks , suggest that the western Eurasian lineage came into contact with Ilex only after the first (early Oligocene) members of sect. Cerris in Northeast Asia had begun to radiate and move westwards. Nuclear 5S-IGS diversification patterns were more useful for establishing a molecular-taxonomic framework and to reveal hybridization and reticulation. Four main evolutionary lineages were identified. The first lineage is comprised of Q. libani , Q. trojana and Q. afares and appears to be closest to the root of sect. Cerris . These taxa are morphologically most similar to the East Asian species of Cerris , and to both Oligocene and Miocene fossils of East Asia and Miocene fossils of western Eurasia. The second lineage is mainly composed of the widespread Q. cerris and the narrow endemic species Q. castaneifolia, Q. look , and Q. euboica . The third lineage comprises three Near East species ( Q. brantii , Q. ithaburensis and Q. macrolepis ), well adapted to continental climates with cold winters. The forth lineage appears to be the most derived and comprises Q. suber and Q. crenata . Q. cerris and Q.  trojana displayed high levels of variation; Q. macrolepis and Q. euboica, previously treated as subspecies of Q. ithaburensis and Q. trojana, likely deserve independent species status. A trend towards inter-specific crosses was detected in several taxa; however, we found no clear evidence of a hybrid origin of Q . afares and Q. crenata , as currently assumed.<br />Competing Interests: The authors declare there are no competing interests.

Details

Language :
English
ISSN :
2167-8359
Volume :
6
Database :
MEDLINE
Journal :
PeerJ
Publication Type :
Academic Journal
Accession number :
30356975
Full Text :
https://doi.org/10.7717/peerj.5793