Back to Search Start Over

Aqueous-Phase Oxidation of Terpene-Derived Acids by Atmospherically Relevant Radicals.

Authors :
Otto T
Schaefer T
Herrmann H
Source :
The journal of physical chemistry. A [J Phys Chem A] 2018 Nov 29; Vol. 122 (47), pp. 9233-9241. Date of Electronic Publication: 2018 Nov 15.
Publication Year :
2018

Abstract

Terpene-derived acids formed through the atmospheric gas-phase oxidation of terpenes are able to efficiently undergo a phase transfer into the aqueous phase. The subsequent aqueous-phase oxidation of such compounds has not been intensely studied. Accordingly, the aqueous-phase second-order rate constants of the oxidation reactions of cis-pinonic acid (CPA) and (+)-camphoric acid (+CA) with hydroxyl radicals ( <superscript>•</superscript> OH), nitrate radicals (NO <subscript>3</subscript> <superscript>•</superscript> ), and sulfate radicals (SO <subscript>4</subscript> <superscript>•-</superscript> ) were investigated as a function of temperature and pH in the present study. For CPA and +CA the following <superscript>•</superscript> OH reaction rate constants at T = 298 K are determined: k <subscript>second</subscript> (CPA, pH<2) = (2.8 ± 0.1) × 10 <superscript>9</superscript> L mol <superscript>-1</superscript> s <superscript>-1</superscript> , k <subscript>second</subscript> (CPA, pH>8) = (2.7 ± 0.3) × 10 <superscript>9</superscript> L mol <superscript>-1</superscript> s <superscript>-1</superscript> , k <subscript>second</subscript> (+CA, pH<2) = (2.1 ± 0.1) × 10 <superscript>9</superscript> L mol <superscript>-1</superscript> s <superscript>-1</superscript> , k <subscript>second</subscript> (+CA, pH=5.3) = (2.7 ± 0.3) × 10 <superscript>9</superscript> L mol <superscript>-1</superscript> s <superscript>-1</superscript> , k <subscript>second</subscript> (+CA, pH>8) = (2.7 ± 0.1) × 10 <superscript>9</superscript> L mol <superscript>-1</superscript> s <superscript>-1</superscript> . In order to assess the atmospheric impact of the aqueous-phase oxidation of such compounds, atmospheric aqueous-phase lifetimes were calculated for two model scenarios based on CAPRAM 3.0i. The aqueous-phase oxidation under remote conditions emerges to be the most favored pathway with lifetimes of 5 ± 1 h.

Details

Language :
English
ISSN :
1520-5215
Volume :
122
Issue :
47
Database :
MEDLINE
Journal :
The journal of physical chemistry. A
Publication Type :
Academic Journal
Accession number :
30359526
Full Text :
https://doi.org/10.1021/acs.jpca.8b08922