Back to Search Start Over

Probing the Lipid Annular Belt by Gas-Phase Dissociation of Membrane Proteins in Nanodiscs.

Authors :
Marty MT
Hoi KK
Gault J
Robinson CV
Source :
Angewandte Chemie (Weinheim an der Bergstrasse, Germany) [Angew Chem Weinheim Bergstr Ger] 2016 Jan 11; Vol. 128 (2), pp. 560-564. Date of Electronic Publication: 2015 Nov 23.
Publication Year :
2016

Abstract

Interactions between membrane proteins and lipids are often crucial for structure and function yet difficult to define because of their dynamic and heterogeneous nature. Here, we use mass spectrometry to demonstrate that membrane protein oligomers ejected from nanodiscs in the gas phase retain large numbers of lipid interactions. The complex mass spectra that result from gas-phase dissociation were assigned using a Bayesian deconvolution algorithm together with mass defect analysis, allowing us to count individual lipid molecules bound to membrane proteins. Comparison of the lipid distributions measured by mass spectrometry with molecular dynamics simulations reveals that the distributions correspond to distinct lipid shells that vary according to the type of protein-lipid interactions. Our results demonstrate that nanodiscs offer the potential for native mass spectrometry to probe interactions between membrane proteins and the wider lipid environment.

Details

Language :
English
ISSN :
0044-8249
Volume :
128
Issue :
2
Database :
MEDLINE
Journal :
Angewandte Chemie (Weinheim an der Bergstrasse, Germany)
Publication Type :
Academic Journal
Accession number :
30416215
Full Text :
https://doi.org/10.1002/ange.201508289