Back to Search Start Over

Defect Engineering in Single-Layer MoS 2 Using Heavy Ion Irradiation.

Authors :
He Z
Zhao R
Chen X
Chen H
Zhu Y
Su H
Huang S
Xue J
Dai J
Cheng S
Liu M
Wang X
Chen Y
Source :
ACS applied materials & interfaces [ACS Appl Mater Interfaces] 2018 Dec 12; Vol. 10 (49), pp. 42524-42533. Date of Electronic Publication: 2018 Nov 28.
Publication Year :
2018

Abstract

Transition metal dichalcogenides (TMDs) have attracted much attention due to their promising optical, electronic, magnetic, and catalytic properties. Engineering the defects in TMDs represents an effective way to achieve novel functionalities and superior performance of TMDs devices. However, it remains a significant challenge to create defects in TMDs in a controllable manner or to correlate the nature of defects with their functionalities. In this work, taking single-layer MoS <subscript>2</subscript> as a model system, defects with controlled densities are generated by 500 keV Au irradiation with different ion fluences, and the generated defects are mostly S vacancies. We further show that the defects introduced by ion irradiation can significantly affect the properties of the single-layer MoS <subscript>2</subscript> , leading to considerable changes in its photoluminescence characteristics and electrocatalytic behavior. As the defect density increases, the characteristic photoluminescence peak of MoS <subscript>2</subscript> first blueshifts and then redshifts, which is likely due to the electron transfer from MoS <subscript>2</subscript> to the adsorbed O <subscript>2</subscript> at the defect sites. The generation of the defects can also strongly improve the hydrogen evolution reaction activity of MoS <subscript>2</subscript> , attributed to the modified adsorption of atomic hydrogen at the defects.

Details

Language :
English
ISSN :
1944-8252
Volume :
10
Issue :
49
Database :
MEDLINE
Journal :
ACS applied materials & interfaces
Publication Type :
Academic Journal
Accession number :
30427173
Full Text :
https://doi.org/10.1021/acsami.8b17145