Back to Search Start Over

Bacterial community composition shaped by water chemistry and geographic distance in an anthropogenically disturbed river.

Authors :
Wang P
Zhao J
Xiao H
Yang W
Yu X
Source :
The Science of the total environment [Sci Total Environ] 2019 Mar 10; Vol. 655, pp. 61-69. Date of Electronic Publication: 2018 Nov 17.
Publication Year :
2019

Abstract

'Core bacterial communities', bacterial species that are found consistently throughout a river continuum, have previously been identified. However, variations in core and non-core bacterial community structure, as well as the relationships between these communities and water chemistry or geographic distance have not been well studied. Here, we sampled in the entire course of the Le'an River, China, and explored the bacterial community composition at each site using Illumina high-throughput sequencing. The proportion of sequence reads assigned to the core community was ~95% in the upper and middle reaches, gradually decreasing below 90% in the lower reaches. Both the Chao1 richness index and the Shannon diversity index of the bacterial communities were significantly higher in the wet season than in the dry season, and both indices increased slightly from upstream to downstream. The variation in the non-core community was more aggregated from upstream to downstream in the wet season than in the dry season, while the aggregation of the core community was similar between the dry season and the wet season. The proportion of typical freshwater bacterial was significantly higher in the core community than in the non-core community. NO <subscript>3</subscript> <superscript>-</superscript> -N was the subset of water chemistry parameters that best explained bacterial community dissimilarities, while 'river length' was the subset of geographic distance parameters that best explained bacterial community dissimilarities. Water chemistry parameters explained more of the variations in the bacterial communities than did geographic distance, especially in the dry season. However, the correlation between water chemistry and bacteria was primarily due to collective allochthonous input (mass effects), not because of any nutritious or toxic effects on bacterial growth competition (species sorting). The greater influence of the mass effects, as compared to species sorting, on bacterial community structure was due to the allochthonous input of bacteria from anthropogenic sources.<br /> (Copyright © 2018 Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1879-1026
Volume :
655
Database :
MEDLINE
Journal :
The Science of the total environment
Publication Type :
Academic Journal
Accession number :
30469069
Full Text :
https://doi.org/10.1016/j.scitotenv.2018.11.234