Back to Search
Start Over
Evaluation of flow-modulation approaches in ventricular assist devices using an in-vitro endothelial cell culture model.
- Source :
-
The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation [J Heart Lung Transplant] 2019 Apr; Vol. 38 (4), pp. 456-465. Date of Electronic Publication: 2018 Nov 02. - Publication Year :
- 2019
-
Abstract
- Background: Continuous-flow ventricular assist devices (CF-VADs) produce non-physiologic flow with diminished pulsatility, which is a major risk factor for development of adverse events, including gastrointestinal (GI) bleeding and arteriovenous malformations (AVMs). Introduction of artificial pulsatility by modulating CF-VAD flow has been suggested as a potential solution. However, the levels of pulsatility and frequency of CF-VAD modulation necessary to prevent adverse events are currently unknown and need to be evaluated.<br />Methods: The purpose of this study was to use human aortic endothelial cells (HAECs) cultured within an endothelial cell culture model (ECCM) to: (i) identify and validate biomarkers to determine the effects of pulsatility; and (ii) conclude whether introduction of artificial pulsatility using flow-modulation approaches can mitigate changes in endothelial cells seen with diminished pulsatile flow. Nuclear factor erythroid 2-related factor 2 (Nrf-2)-regulated anti-oxidant genes and proteins and the endothelial nitric oxide synthase/endothelin-1 (eNOS/ET-1) signaling pathway are known to be differentially regulated in response to changes in pulsatility.<br />Results: Comparison of HAECs cultured within the ECCM (normal pulsatile vs CF-VAD) with aortic wall samples from patients (normal pulsatile [n = 5] vs CF-VADs [n = 5]) confirmed that both the Nrf-2-activated anti-oxidant response and eNOS/ET-1 signaling pathways were differentially regulated in response to diminished pulsatility. Evaluation of 2 specific CF-VAD flow-modulation protocols to introduce artificial pulsatility, synchronous (SYN, 80 cycles/min, pulse pressure 20 mm Hg) and asynchronous (ASYN, 40 cycles/min, pulse pressure 45 mm Hg), suggested that both increased expression of Nrf-2-regulated anti-oxidant genes and proteins along with changes in levels of eNOS and ET-1 can potentially be minimized with ASYN and, to a lesser extent, with SYN.<br />Conclusions: HAECs cultured within the ECCM can be used as an accurate model of large vessels in patients to identify biomarkers and select appropriate flow-modulation protocols. Pressure amplitude may have a greater effect in normalizing anti-oxidant response compared with frequency of modulation.<br /> (Copyright © 2018 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.)
Details
- Language :
- English
- ISSN :
- 1557-3117
- Volume :
- 38
- Issue :
- 4
- Database :
- MEDLINE
- Journal :
- The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation
- Publication Type :
- Academic Journal
- Accession number :
- 30503074
- Full Text :
- https://doi.org/10.1016/j.healun.2018.10.007