Back to Search
Start Over
Properties of single-channel and whole cell Cl - currents in guinea pig detrusor smooth muscle cells.
- Source :
-
American journal of physiology. Cell physiology [Am J Physiol Cell Physiol] 2019 May 01; Vol. 316 (5), pp. C698-C710. Date of Electronic Publication: 2018 Dec 19. - Publication Year :
- 2019
-
Abstract
- Multiple types of Cl <superscript>-</superscript> channels regulate smooth muscle excitability and contractility in vascular, gastrointestinal, and airway smooth muscle cells. However, little is known about Cl <superscript>-</superscript> channels in detrusor smooth muscle (DSM) cells. Here, we used inside-out single channel and whole cell patch-clamp recordings for detailed biophysical and pharmacological characterizations of Cl <superscript>-</superscript> channels in freshly isolated guinea pig DSM cells. The recorded single Cl <superscript>-</superscript> channels displayed unique gating with multiple subconductive states, a fully opened single-channel conductance of 164 pS, and a reversal potential of -41.5 mV, which is close to the E <subscript>Cl</subscript> of -65 mV, confirming preferential permeability to Cl <superscript>-</superscript> . The Cl <superscript>-</superscript> channel demonstrated strong voltage dependence of activation (half-maximum of mean open probability, V <subscript>0.5</subscript> , ~-20 mV) and robust prolonged openings at depolarizing voltages. The channel displayed similar gating when exposed intracellularly to solutions containing Ca <superscript>2+</superscript> -free or 1 mM Ca <superscript>2+</superscript> . In whole cell patch-clamp recordings, macroscopic current demonstrated outward rectification, inhibitions by 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS) and niflumic acid, and insensitivity to chlorotoxin. The outward current was reversibly reduced by 94% replacement of extracellular Cl <superscript>-</superscript> with I <superscript>-</superscript> , Br <superscript>-</superscript> , or methanesulfonate (MsO <superscript>-</superscript> ), resulting in anionic permeability sequence: Cl <superscript>-</superscript> >Br <superscript>-</superscript> >I <superscript>-</superscript> >MsO <superscript>-</superscript> . While intracellular Ca <superscript>2+</superscript> levels (0, 300 nM, and 1 mM) did not affect the amplitude of Cl <superscript>-</superscript> current and outward rectification, high Ca <superscript>2+</superscript> slowed voltage-step current activation at depolarizing voltages. In conclusion, our data reveal for the first time the presence of a Ca <superscript>2+</superscript> -independent DIDS and niflumic acid-sensitive, voltage-dependent Cl <superscript>-</superscript> channel in the plasma membrane of DSM cells. This channel may be a key regulator of DSM excitability.
- Subjects :
- Animals
Anti-Inflammatory Agents, Non-Steroidal pharmacology
Cell Membrane drug effects
Cells, Cultured
Chloride Channels antagonists & inhibitors
Guinea Pigs
Male
Myocytes, Smooth Muscle drug effects
Niflumic Acid pharmacology
Urinary Bladder drug effects
Cell Membrane metabolism
Chloride Channels metabolism
Myocytes, Smooth Muscle metabolism
Urinary Bladder cytology
Urinary Bladder metabolism
Subjects
Details
- Language :
- English
- ISSN :
- 1522-1563
- Volume :
- 316
- Issue :
- 5
- Database :
- MEDLINE
- Journal :
- American journal of physiology. Cell physiology
- Publication Type :
- Academic Journal
- Accession number :
- 30566392
- Full Text :
- https://doi.org/10.1152/ajpcell.00327.2018