Back to Search
Start Over
Probing the Virtual Proteome to Identify Novel Disease Biomarkers.
- Source :
-
Circulation [Circulation] 2018 Nov 27; Vol. 138 (22), pp. 2469-2481. - Publication Year :
- 2018
-
Abstract
- Background: Proteomic approaches allow measurement of thousands of proteins in a single specimen, which can accelerate biomarker discovery. However, applying these technologies to massive biobanks is not currently feasible because of the practical barriers and costs of implementing such assays at scale. To overcome these challenges, we used a "virtual proteomic" approach, linking genetically predicted protein levels to clinical diagnoses in >40 000 individuals.<br />Methods: We used genome-wide association data from the Framingham Heart Study (n=759) to construct genetic predictors for 1129 plasma protein levels. We validated the genetic predictors for 268 proteins and used them to compute predicted protein levels in 41 288 genotyped individuals in the Electronic Medical Records and Genomics (eMERGE) cohort. We tested associations for each predicted protein with 1128 clinical phenotypes. Lead associations were validated with directly measured protein levels and either low-density lipoprotein cholesterol or subclinical atherosclerosis in the MDCS (Malmö Diet and Cancer Study; n=651).<br />Results: In the virtual proteomic analysis in eMERGE, 55 proteins were associated with 89 distinct diagnoses at a false discovery rate q<0.1. Among these, 13 associations involved lipid (n=7) or atherosclerosis (n=6) phenotypes. We tested each association for validation in MDCS using directly measured protein levels. At Bonferroni-adjusted significance thresholds, levels of apolipoprotein E isoforms were associated with hyperlipidemia, and circulating C-type lectin domain family 1 member B and platelet-derived growth factor receptor-β predicted subclinical atherosclerosis. Odds ratios for carotid atherosclerosis were 1.31 (95% CI, 1.08-1.58; P=0.006) per 1-SD increment in C-type lectin domain family 1 member B and 0.79 (0.66-0.94; P=0.008) per 1-SD increment in platelet-derived growth factor receptor-β.<br />Conclusions: We demonstrate a biomarker discovery paradigm to identify candidate biomarkers of cardiovascular and other diseases.
- Subjects :
- Adult
Aged
Aged, 80 and over
Carotid Artery Diseases genetics
Female
Genotype
Humans
Lectins, C-Type analysis
Male
Middle Aged
Odds Ratio
Phenotype
Polymorphism, Single Nucleotide
Proteomics
Receptor, Platelet-Derived Growth Factor beta blood
Biomarkers blood
Carotid Artery Diseases diagnosis
Genome-Wide Association Study
Proteome analysis
Subjects
Details
- Language :
- English
- ISSN :
- 1524-4539
- Volume :
- 138
- Issue :
- 22
- Database :
- MEDLINE
- Journal :
- Circulation
- Publication Type :
- Academic Journal
- Accession number :
- 30571344
- Full Text :
- https://doi.org/10.1161/CIRCULATIONAHA.118.036063