Back to Search Start Over

Identification and Characterization of a Novel Strigolactone-Insensitive Mutant, Dwarfism with High Tillering Ability 34 (dhta-34) in Rice (Oryza sativa L.).

Authors :
Liang R
Qin R
Yang C
Zeng D
Jin X
Shi C
Source :
Biochemical genetics [Biochem Genet] 2019 Jun; Vol. 57 (3), pp. 403-420. Date of Electronic Publication: 2019 Jan 01.
Publication Year :
2019

Abstract

Rice tillering ability and plant height are two of the important traits determining the grain yield. A novel rice (Oryza sativa L.) mutant dhta-34 from an Indica cultivar Zhenong 34 treated by ethyl methy1 sulfonate (EMS) was investigated in this study. The dhta-34 mutant significantly revealed thrifty tillers with reduced plant height, smaller panicles and lighter grains. It also exhibited late-maturing (19.80 days later than the wild type) and withered leaf tip during the mature stage. The length of each internode was reduced compared to the wild type, belonging to the dn type (each internode of the plant stem decreased in the same ratio). The longitudinal section of dhta-34 internodes showed that the length of cells was reduced leading to the dwarfism of the mutant. The F <subscript>2</subscript> population derived from a cross between dhta-34 and an Japonica cultivar Zhenongda 104 were used for gene mapping by using the map-based cloning strategy. The gene DHTA-34 was fine mapped in 183.8kb region flanked by markers 3R-7 and 3R-10. The cloning and sequencing of the target region from the mutant revealed that there was a substitution of G to A in the second exon of LOC_Os03g10620, which resulted in an amino acid substitution arginine to histidine. DHTA-34 encoded a protein of the α/β-fold hydrolase superfamily, which could suppress the tillering ability of rice. DHTA-34 was a strong loss-of-function allele of the Arabidopsis thaliana D14 gene, which was involved in part of strigolactones (SLs) perception and signaling. Moreover, the relative expression of DHTA-34 gene in leaf was higher than that in bud, internode, root or sheath. This study revealed that DHTA-34 played an important role in inhabiting tiller development in rice and further identifying the function of D14.

Details

Language :
English
ISSN :
1573-4927
Volume :
57
Issue :
3
Database :
MEDLINE
Journal :
Biochemical genetics
Publication Type :
Academic Journal
Accession number :
30600409
Full Text :
https://doi.org/10.1007/s10528-018-9896-z