Back to Search Start Over

Three-Dimensional Shapes of Spinning Helium Nanodroplets.

Authors :
Langbehn B
Sander K
Ovcharenko Y
Peltz C
Clark A
Coreno M
Cucini R
Drabbels M
Finetti P
Di Fraia M
Giannessi L
Grazioli C
Iablonskyi D
LaForge AC
Nishiyama T
Oliver Álvarez de Lara V
Piseri P
Plekan O
Ueda K
Zimmermann J
Prince KC
Stienkemeier F
Callegari C
Fennel T
Rupp D
Möller T
Source :
Physical review letters [Phys Rev Lett] 2018 Dec 21; Vol. 121 (25), pp. 255301.
Publication Year :
2018

Abstract

A significant fraction of superfluid helium nanodroplets produced in a free-jet expansion has been observed to gain high angular momentum resulting in large centrifugal deformation. We measured single-shot diffraction patterns of individual rotating helium nanodroplets up to large scattering angles using intense extreme ultraviolet light pulses from the FERMI free-electron laser. Distinct asymmetric features in the wide-angle diffraction patterns enable the unique and systematic identification of the three-dimensional droplet shapes. The analysis of a large data set allows us to follow the evolution from axisymmetric oblate to triaxial prolate and two-lobed droplets. We find that the shapes of spinning superfluid helium droplets exhibit the same stages as classical rotating droplets while the previously reported metastable, oblate shapes of quantum droplets are not observed. Our three-dimensional analysis represents a valuable landmark for clarifying the interrelation between morphology and superfluidity on the nanometer scale.

Details

Language :
English
ISSN :
1079-7114
Volume :
121
Issue :
25
Database :
MEDLINE
Journal :
Physical review letters
Publication Type :
Academic Journal
Accession number :
30608832
Full Text :
https://doi.org/10.1103/PhysRevLett.121.255301