Back to Search Start Over

Nanostructuring Confinement for Controllable Interfacial Charge Transfer.

Authors :
Qiao W
Tao HB
Liu B
Chen J
Source :
Small (Weinheim an der Bergstrasse, Germany) [Small] 2019 Jul; Vol. 15 (29), pp. e1804391. Date of Electronic Publication: 2019 Jan 20.
Publication Year :
2019

Abstract

Carbon nanostructures supported semiconductors are common in photocatalytic and photoelectrochemical applications, as it is expected that the nanoconductors can improve the spatial separation and transport of photogenerated charge carriers. Transfer of charge carriers through the carbon-semiconductor interface is the key electronic process, which determines the role of charge separation channels, and is sensitively influenced by band structures of the semiconductor near the contacts. Usually, this electronic process suffers from excessive energy dissipation by thermionic emission, which will undesirably prevent the interfacial charge transfer and eventually aggravate the recombination of photogenerated charge carriers. Unfortunately, this critical issue has hardly been consciously considered. Here, ultrathin dopant-free tunneling interlayers coated on the surface of graphene and sandwiched between the carbon sheets and the semiconductor nanostructures are adopted as a model system to demonstrate energy saving for the interfacial charge transfer. The nanostructuring confinement of band bending within the ultrathin interlayers in contact with the graphene sheets effectively narrows the width of the potential barriers, which enables tunneling of a substantial number of photogenerated electrons to the co-catalysts without unduly consuming energy. Besides, the dopant-free tunneling interlayers simultaneously block the transferred electrons in the sandwiched graphene sheets from leakage.<br /> (© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.)

Details

Language :
English
ISSN :
1613-6829
Volume :
15
Issue :
29
Database :
MEDLINE
Journal :
Small (Weinheim an der Bergstrasse, Germany)
Publication Type :
Academic Journal
Accession number :
30663213
Full Text :
https://doi.org/10.1002/smll.201804391