Back to Search Start Over

Whole-Cell Photoacoustic Sensor Based on Pigment Relocalization.

Authors :
Lauri A
Soliman D
Omar M
Stelzl A
Ntziachristos V
Westmeyer GG
Source :
ACS sensors [ACS Sens] 2019 Mar 22; Vol. 4 (3), pp. 603-612. Date of Electronic Publication: 2019 Jan 21.
Publication Year :
2019

Abstract

Photoacoustic (optoacoustic) imaging can extract molecular information with deeper tissue penetration than possible by fluorescence microscopy techniques. However, there is currently still a lack of robust genetically controlled contrast agents and molecular sensors that can dynamically detect biological analytes of interest with photoacoustics. In a biomimetic approach, we took inspiration from cuttlefish who can change their color by relocalizing pigment-filled organelles in so-called chromatophore cells under neurohumoral control. Analogously, we tested the use of melanophore cells from Xenopus laevis, containing compartments (melanosomes) filled with strongly absorbing melanin, as whole-cell sensors for optoacoustic imaging. Our results show that pigment relocalization in these cells, which is dependent on binding of a ligand of interest to a specific G protein-coupled receptor (GPCR), can be monitored in vitro and in vivo using photoacoustic mesoscopy. In addition to changes in the photoacoustic signal amplitudes, we could furthermore detect the melanosome aggregation process by a change in the frequency content of the photoacoustic signals. Using bioinspired engineering, we thus introduce a photoacoustic pigment relocalization sensor (PaPiReS) for molecular photoacoustic imaging of GPCR-mediated signaling molecules.

Details

Language :
English
ISSN :
2379-3694
Volume :
4
Issue :
3
Database :
MEDLINE
Journal :
ACS sensors
Publication Type :
Academic Journal
Accession number :
30663315
Full Text :
https://doi.org/10.1021/acssensors.8b01319