Back to Search Start Over

[Vasodilation effect and mechanism of extraction of Tongmai Yangxin Pills (TMYX) on isolated rat mesenteric artery].

Authors :
Zhou XJ
Kong XM
Wang YC
Jiang C
Jin ZX
Ai L
Zhang L
Wang Y
Source :
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica [Zhongguo Zhong Yao Za Zhi] 2018 Dec; Vol. 43 (23), pp. 4672-4677.
Publication Year :
2018

Abstract

The aim of the present study is to evaluate the vasodilation effects of Tongmai Yangxin Pills (TMYX) on rat mesenteric artery as well as its mechanism of action. The relaxation effects of TMYX extracts with different concentrations were determined on isolated rat mesenteric artery in normal condition as well as pretreating by phenylephrine and KCl. Vascular relaxation effects of TMTX were also determined in mesenteric artery preincubated with L-ANME and indomethacin or in endothelium denuded mesenteric artery. Moreover, effects of TMYX by 50 mg·L⁻¹ on NO secretion and the phosphorylation of eNOS in a cellular model of human umbilical vein endothelial cell (HUVEC) pretreated with or without L-NAME were also observed. The experimental results showed that TMYX has no obvious effect on vasodilation of arteries in normal or KCl pretreated condition, while it can dose-dependently relax the rat mesenteric artery with intact endothelium stimulated with phenylephrine at a maximal diastolic rate of (64.71±10.03)%. After preincubating with L-NAME for 15 min or removal of mesenteric artery endothelium, the maximal diastolic rate was decreased to (35.77±8.93)% and (25.85±10.84)% respectively. However, preincubating with indomethacin had no inhibitory effect on TMYX induced vascular relaxation. Meanwhile, TMYX at 50 mg·L⁻¹ could increase the expression of P-eNOS and the secretion of NO in HUVEC. L-NAME significantly inhibited NO release and phosphorylation of eNOS induced by TMYX. The results suggested TMYX exerted endothelium-dependent relaxation effects against PE-induced contractions of isolated rat mesenteric artery through NO-cGMP signaling pathway.<br />Competing Interests: The authors of this article and the planning committee members and staff have no relevant financial relationships with commercial interests to disclose.<br /> (Copyright© by the Chinese Pharmaceutical Association.)

Details

Language :
Chinese
ISSN :
1001-5302
Volume :
43
Issue :
23
Database :
MEDLINE
Journal :
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica
Publication Type :
Academic Journal
Accession number :
30717557
Full Text :
https://doi.org/10.19540/j.cnki.cjcmm.20181031.002