Back to Search Start Over

Simultaneous quantitative detection of viable Escherichia coli O157:H7, Cronobacter spp., and Salmonella spp. using sodium deoxycholate-propidium monoazide with multiplex real-time PCR.

Authors :
Liang T
Zhou P
Zhou B
Xu Q
Zhou Z
Wu X
Aguilar ZP
Xu H
Source :
Journal of dairy science [J Dairy Sci] 2019 Apr; Vol. 102 (4), pp. 2954-2965. Date of Electronic Publication: 2019 Feb 22.
Publication Year :
2019

Abstract

Escherichia coli O157:H7, Cronobacter spp., and Salmonella spp. are common food-borne pathogens in milk that may cause serious diseases. In the present study, we established a simple, rapid, and specific method to simultaneously detect viable E. coli O157:H7, Cronobacter spp., and Salmonella spp. in milk. Three specific genes, fliC from E. coli O157:H7, cgcA from Cronobacter spp., and invA from Salmonella spp., were selected and used to design primers and probes. False-positive results were eliminated with the use of a combined sodium deoxycholate (SD) and propidium monoazide (PMA) treatment. Using the optimized parameters, this SD-PMA treatment combined with multiplex real-time PCR (SD-PMA-mRT-PCR) detected E. coli O157:H7, Cronobacter spp. and Salmonella spp. respectively, at 10 <superscript>2</superscript> cfu/mL in pure culture or artificially spiked skim milk samples. A reasonable recovery rate (from 100 to 107%) for detection of viable bacteria using the SD-PMA-mRT-PCR assay was obtained in the presence of dead bacteria at 10 <superscript>7</superscript> cfu/mL. The SD-PMA-mRT-PCR method developed in this study can accurately detect and monitor combined contamination with E. coli O157:H7, Cronobacter spp., and Salmonella spp. in milk and milk products.<br /> (Copyright © 2019 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.)

Details

Language :
English
ISSN :
1525-3198
Volume :
102
Issue :
4
Database :
MEDLINE
Journal :
Journal of dairy science
Publication Type :
Academic Journal
Accession number :
30799110
Full Text :
https://doi.org/10.3168/jds.2018-15736