Back to Search
Start Over
Soil bacterial diversity is positively associated with air temperature in the maritime Antarctic.
- Source :
-
Scientific reports [Sci Rep] 2019 Feb 25; Vol. 9 (1), pp. 2686. Date of Electronic Publication: 2019 Feb 25. - Publication Year :
- 2019
-
Abstract
- Terrestrial ecosystems in the maritime Antarctic experienced rapid warming during the latter half of the 20 <superscript>th</superscript> century. While warming ceased at the turn of the millennium, significant increases in air temperature are expected later this century, with predicted positive effects on soil fungal diversity, plant growth and ecosystem productivity. Here, by sequencing 16S ribosomal RNA genes in 40 soils sampled from along a 1,650 km climatic gradient through the maritime Antarctic, we determine whether rising air temperatures might similarly influence the diversity of soil bacteria. Of 22 environmental factors, mean annual surface air temperature was the strongest and most consistent predictor of soil bacterial diversity. Significant, but weaker, associations between bacterial diversity and soil moisture content, C:N ratio, and Ca, Mg, PO <subscript>4</subscript> <superscript>3-</superscript> and dissolved organic C concentrations were also detected. These findings indicate that further rises in air temperature in the maritime Antarctic may enhance terrestrial ecosystem productivity through positive effects on soil bacterial diversity.
- Subjects :
- Antarctic Regions
Bacteria classification
Bacteria genetics
Climate
Ecosystem
Geography
Phylogeny
RNA, Ribosomal, 16S genetics
Seawater chemistry
Seawater microbiology
Sequence Analysis, DNA methods
Soil chemistry
Species Specificity
Bacteria growth & development
Biodiversity
Genetic Variation
Soil Microbiology
Temperature
Subjects
Details
- Language :
- English
- ISSN :
- 2045-2322
- Volume :
- 9
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- Scientific reports
- Publication Type :
- Academic Journal
- Accession number :
- 30804443
- Full Text :
- https://doi.org/10.1038/s41598-019-39521-7