Back to Search
Start Over
Dynamic changes in histone deacetylases following kidney ischemia-reperfusion injury are critical for promoting proximal tubule proliferation.
- Source :
-
American journal of physiology. Renal physiology [Am J Physiol Renal Physiol] 2019 May 01; Vol. 316 (5), pp. F875-F888. Date of Electronic Publication: 2019 Feb 27. - Publication Year :
- 2019
-
Abstract
- Deranged histone deacetylase (HDAC) activity causes uncontrolled proliferation, inflammation, fibrosis, and organ damage. It is unclear whether deranged HDAC activity results in acute kidney injury in the renal hypoperfusion model of bilateral ischemia-reperfusion injury (IRI) and whether in vivo inhibition is an appropriate therapeutic approach to limit injury. Male mice were implanted with intraperitoneal osmotic minipumps containing vehicle, the class I HDAC inhibitor, MS275, or the pan-HDAC inhibitor, trichostatin A (TSA), 3 days before sham/bilateral IRI surgery. Kidney cortical samples were analyzed using histological, immunohistochemical, and Western blotting techniques. HDAC-dependent proliferation rate was measured in immortalized rat epithelial cells and primary mouse or human proximal tubule (PT) cells. There were dynamic changes in cortical HDAC localization and abundance following IRI including a fourfold increase in HDAC4 in the PT. HDAC inhibition resulted in a significantly higher plasma creatinine, increased kidney damage, but reduced interstitial fibrosis compared with vehicle-treated IRI mice. HDAC-inhibited mice had reduced interstitial α-smooth muscle actin, fibronectin expression, and Sirius red-positive area, suggesting that IRI activates HDAC-mediated fibrotic pathways. In vivo proliferation of the kidney epithelium was significantly reduced in TSA-treated, but not MS275-treated, IRI mice, suggesting class II HDACs mediate proliferation. Furthermore, HDAC4 activation increased proliferation of human and mouse PTs. Kidney HDACs are activated during IRI with isoform-specific expression patterns. Our data point to mechanisms whereby IRI activates HDACs resulting in fibrotic pathways but also activation of PT proliferation and repair pathways. This study demonstrates the need to develop isoform-selective HDAC inhibitors for the treatment of renal hypoperfusion-induced injury.
- Subjects :
- Acute Kidney Injury drug therapy
Acute Kidney Injury pathology
Animals
Autophagy
Cell Line
Disease Models, Animal
Epithelial Cells drug effects
Epithelial Cells pathology
Histone Deacetylase Inhibitors pharmacology
Kidney Tubules, Proximal drug effects
Kidney Tubules, Proximal pathology
Male
Mice, Inbred C57BL
Rats
Reperfusion Injury drug therapy
Reperfusion Injury pathology
Signal Transduction
Time Factors
Acute Kidney Injury enzymology
Cell Proliferation drug effects
Epithelial Cells enzymology
Histone Deacetylases metabolism
Kidney Tubules, Proximal enzymology
Reperfusion Injury enzymology
Subjects
Details
- Language :
- English
- ISSN :
- 1522-1466
- Volume :
- 316
- Issue :
- 5
- Database :
- MEDLINE
- Journal :
- American journal of physiology. Renal physiology
- Publication Type :
- Academic Journal
- Accession number :
- 30810062
- Full Text :
- https://doi.org/10.1152/ajprenal.00499.2018