Back to Search Start Over

Dural lymphatics regulate clearance of extracellular tau from the CNS.

Authors :
Patel TK
Habimana-Griffin L
Gao X
Xu B
Achilefu S
Alitalo K
McKee CA
Sheehan PW
Musiek ES
Xiong C
Coble D
Holtzman DM
Source :
Molecular neurodegeneration [Mol Neurodegener] 2019 Feb 27; Vol. 14 (1), pp. 11. Date of Electronic Publication: 2019 Feb 27.
Publication Year :
2019

Abstract

Background: Alzheimer's disease is characterized by two main neuropathological hallmarks: extracellular plaques of amyloid-β (Aβ) protein and intracellular aggregates of tau protein. Although tau is normally a soluble monomer that bind microtubules, in disease it forms insoluble, hyperphosphorylated aggregates in the cell body. Aside from its role in AD, tau is also involved in several other neurodegenerative disorders collectively called tauopathies, such as progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), some forms of frontotemporal dementia, and argyrophilic grain disease (AGD). The prion hypothesis suggests that after an initial trigger event, misfolded forms of tau are released into the extracellular space, where they spread through different brain regions, enter cells, and seeding previously normal forms. Thus understanding mechanisms regulating the clearance of extracellular tau from the CNS is important. The discovery of a true lymphatic system in the dura and its potential role in mediating Aβ pathology prompted us to investigate its role in regulating extracellular tau clearance.<br />Methods: To study clearance of extracellular tau from the brain, we conjugated monomeric human tau with a near-infrared dye cypate, and injected this labeled tau in the parenchyma of both wild-type and K14-VEGFR3-Ig transgenic mice, which lack a functional CNS lymphatic system. Following injection we performed longitudinal imaging using fluorescence molecular tomography (FMT) and quantified fluorescence to calculate clearance of tau from the brain. To complement this, we also measured tau clearance to the periphery by measuring plasma tau in both groups of mice.<br />Results: Our results show that a significantly higher amount of tau is retained in the brains of K14-VEGFR3-Ig vs. wild type mice at 48 and 72 h post-injection and its subsequent clearance to the periphery is delayed. We found that clearance of reference tracer human serum albumin (HSA) was also significantly delayed in the K14-VEGFR3-Ig mice.<br />Conclusions: The dural lymphatic system appears to play an important role in clearance of extracellular tau, since tau clearance is impaired in the absence of functional lymphatics. Based on our baseline characterization of extracellular tau clearance, future studies are warranted to look at the interaction between tau pathology and efficiency of lymphatic function.

Details

Language :
English
ISSN :
1750-1326
Volume :
14
Issue :
1
Database :
MEDLINE
Journal :
Molecular neurodegeneration
Publication Type :
Academic Journal
Accession number :
30813965
Full Text :
https://doi.org/10.1186/s13024-019-0312-x