Back to Search
Start Over
Lipid phenotyping of lung epithelial lining fluid in healthy human volunteers.
- Source :
-
Metabolomics : Official journal of the Metabolomic Society [Metabolomics] 2018 Sep 17; Vol. 14 (10), pp. 123. Date of Electronic Publication: 2018 Sep 17. - Publication Year :
- 2018
-
Abstract
- Background: Lung epithelial lining fluid (ELF)-sampled through sputum induction-is a medium rich in cells, proteins and lipids. However, despite its key role in maintaining lung function, homeostasis and defences, the composition and biology of ELF, especially in respect of lipids, remain incompletely understood.<br />Objectives: To characterise the induced sputum lipidome of healthy adult individuals, and to examine associations between different ELF lipid phenotypes and the demographic characteristics within the study cohort.<br />Methods: Induced sputum samples were obtained from 41 healthy non-smoking adults, and their lipid compositions analysed using a combination of untargeted shotgun and liquid chromatography mass spectrometry methods. Topological data analysis (TDA) was used to group subjects with comparable sputum lipidomes in order to identify distinct ELF phenotypes.<br />Results: The induced sputum lipidome was diverse, comprising a range of different molecular classes, including at least 75 glycerophospholipids, 13 sphingolipids, 5 sterol lipids and 12 neutral glycerolipids. TDA identified two distinct phenotypes differentiated by a higher total lipid content and specific enrichments of diacyl-glycerophosphocholines, -inositols and -glycerols in one group, with enrichments of sterols, glycolipids and sphingolipids in the other. Subjects presenting the lipid-rich ELF phenotype also had significantly higher BMI, but did not differ in respect of other demographic characteristics such as age or gender.<br />Conclusions: We provide the first evidence that the ELF lipidome varies significantly between healthy individuals and propose that such differences are related to weight status, highlighting the potential impact of (over)nutrition on lung lipid metabolism.
Details
- Language :
- English
- ISSN :
- 1573-3890
- Volume :
- 14
- Issue :
- 10
- Database :
- MEDLINE
- Journal :
- Metabolomics : Official journal of the Metabolomic Society
- Publication Type :
- Academic Journal
- Accession number :
- 30830396
- Full Text :
- https://doi.org/10.1007/s11306-018-1412-2