Back to Search Start Over

Glycome and Proteome Components of Golgi Membranes Are Common between Two Angiosperms with Distinct Cell-Wall Structures.

Authors :
Okekeogbu IO
Pattathil S
González Fernández-Niño SM
Aryal UK
Penning BW
Lao J
Heazlewood JL
Hahn MG
McCann MC
Carpita NC
Source :
The Plant cell [Plant Cell] 2019 May; Vol. 31 (5), pp. 1094-1112. Date of Electronic Publication: 2019 Mar 26.
Publication Year :
2019

Abstract

The plant endoplasmic reticulum-Golgi apparatus is the site of synthesis, assembly, and trafficking of all noncellulosic polysaccharides, proteoglycans, and proteins destined for the cell wall. As grass species make cell walls distinct from those of dicots and noncommelinid monocots, it has been assumed that the differences in cell-wall composition stem from differences in biosynthetic capacities of their respective Golgi. However, immunosorbence-based screens and carbohydrate linkage analysis of polysaccharides in Golgi membranes, enriched by flotation centrifugation from etiolated coleoptiles of maize ( Zea mays ) and leaves of Arabidopsis ( Arabidopsis thaliana ), showed that arabinogalactan-proteins and arabinans represent substantial portions of the Golgi-resident polysaccharides not typically found in high abundance in cell walls of either species. Further, hemicelluloses accumulated in Golgi at levels that contrasted with those found in their respective cell walls, with xyloglucans enriched in maize Golgi, and xylans enriched in Arabidopsis. Consistent with this finding, maize Golgi membranes isolated by flotation centrifugation and enriched further by free-flow electrophoresis, yielded >200 proteins known to function in the biosynthesis and metabolism of cell-wall polysaccharides common to all angiosperms, and not just those specific to cell-wall type. We propose that the distinctive compositions of grass primary cell walls compared with other angiosperms result from differential gating or metabolism of secreted polysaccharides post-Golgi by an as-yet unknown mechanism, and not necessarily by differential expression of genes encoding specific synthase complexes.<br /> (© 2019 American Society of Plant Biologists. All rights reserved.)

Details

Language :
English
ISSN :
1532-298X
Volume :
31
Issue :
5
Database :
MEDLINE
Journal :
The Plant cell
Publication Type :
Academic Journal
Accession number :
30914498
Full Text :
https://doi.org/10.1105/tpc.18.00755