Back to Search Start Over

Carbohydrate-supramolecular gels: Adsorbents for chromium(VI) removal from wastewater.

Authors :
Rizzo C
Andrews JL
Steed JW
D'Anna F
Source :
Journal of colloid and interface science [J Colloid Interface Sci] 2019 Jul 15; Vol. 548, pp. 184-196. Date of Electronic Publication: 2019 Apr 11.
Publication Year :
2019

Abstract

Hypothesis: To overcome the contamination of water by heavy metals the adsorption of the pollutant on gel phases is an attractive solution since gels are inexpensive, potentially highly efficient and form a distinct phase while allowing diffusion of the contaminated water throughout the material. This work tests the chromium(VI) adsorbent capacity of new supramolecular gels for Chromium(VI) removal from wastewater.<br />Experiments: First hydrophobic imidazolium salts of carbohydrate anions were synthesised as new gelators. Subsequently, they were dissolved in a solvent by heating and, after cooling overnight, to give the formation of supramolecular gels. The properties of the resulting gels, such as thermal stability, mechanical strength, morphology, rheology, and kinetics of gel formation, were studied as a function of gelator structure, gelation solvent and pollutant removal efficiency.<br />Findings: Carbohydrate-derived gels showed the best removal capacity, i.e. 97% in 24 h. Interestingly, in one case, the reduction of chromium(VI) to chromium(III) also occurred after the adsorption process, and this phenomenon has been analysed using <superscript>1</superscript> H NMR spectroscopy, IR spectroscopy, and SEM. The most efficient gel can reach an adsorption capacity of 598 mg/g in contrast to a value of 153 mg/g for the most effectively best hydrogels reported to date. The new gel can be also recycled up to 4 times. These findings suggest that these new, supramolecular hydrogels have potential applications in environmental remediation.<br /> (Copyright © 2019 Elsevier Inc. All rights reserved.)

Details

Language :
English
ISSN :
1095-7103
Volume :
548
Database :
MEDLINE
Journal :
Journal of colloid and interface science
Publication Type :
Academic Journal
Accession number :
31003165
Full Text :
https://doi.org/10.1016/j.jcis.2019.04.034