Back to Search Start Over

Selective Methane Oxidation to Methanol on Cu-Oxo Dimers Stabilized by Zirconia Nodes of an NU-1000 Metal-Organic Framework.

Authors :
Zheng J
Ye J
Ortuño MA
Fulton JL
Gutiérrez OY
Camaioni DM
Motkuri RK
Li Z
Webber TE
Mehdi BL
Browning ND
Penn RL
Farha OK
Hupp JT
Truhlar DG
Cramer CJ
Lercher JA
Source :
Journal of the American Chemical Society [J Am Chem Soc] 2019 Jun 12; Vol. 141 (23), pp. 9292-9304. Date of Electronic Publication: 2019 May 31.
Publication Year :
2019

Abstract

Mononuclear and dinuclear copper species were synthesized at the nodes of an NU-1000 metal-organic framework (MOF) via cation exchange and subsequent oxidation at 200 °C in oxygen. Copper-exchanged MOFs are active for selectively converting methane to methanol at 150-200 °C. At 150 °C and 1 bar methane, approximately a third of the copper centers are involved in converting methane to methanol. Methanol productivity increased by 3-4-fold and selectivity increased from 70% to 90% by increasing the methane pressure from 1 to 40 bar. Density functional theory showed that reaction pathways on various copper sites are able to convert methane to methanol, the copper oxyl sites with much lower free energies of activation. Combining studies of the stoichiometric activity with characterization by in situ X-ray absorption spectroscopy and density functional theory, we conclude that dehydrated dinuclear copper oxyl sites formed after activation at 200 °C are responsible for the activity.

Details

Language :
English
ISSN :
1520-5126
Volume :
141
Issue :
23
Database :
MEDLINE
Journal :
Journal of the American Chemical Society
Publication Type :
Academic Journal
Accession number :
31117650
Full Text :
https://doi.org/10.1021/jacs.9b02902