Back to Search
Start Over
Third generation EGFR inhibitor osimertinib combined with pemetrexed or cisplatin exerts long-lasting anti-tumor effect in EGFR-mutated pre-clinical models of NSCLC.
- Source :
-
Journal of experimental & clinical cancer research : CR [J Exp Clin Cancer Res] 2019 May 28; Vol. 38 (1), pp. 222. Date of Electronic Publication: 2019 May 28. - Publication Year :
- 2019
-
Abstract
- Background: The third generation Epidermal Growth Factor Receptor (EGFR) Tyrosine Kinase Inhibitor (TKI) osimertinib has been initially approved for T790M positive Non-Small Cell Lung Cancer (NSCLC) and more recently for first-line treatment of EGFR-mutant T790M negative NSCLC patients. Similarly to previous generation TKIs, despite the high response rate, disease progression eventually occurs and current clinical research is focused on novel strategies to delay the emergence of osimertinib resistance. In this study we investigated the combination of osimertinib with pemetrexed or cisplatin in EGFR-mutated NSCLC cell lines and xenografts.<br />Methods: Tumor growth was evaluated in a PC9T790M xenograft model and tissue composition was morphometrically determined. PC9, PC9T790M and HCC827 cell lines were employed to test the efficacy of osimertinib and chemotherapy combination in vitro. Cell viability and cell death were evaluated by MTT assay and fluorescence microscopy. Protein expression and gene status were analysed by Western blotting, fluorescence in situ hybridization analysis, next-generation sequencing and digital droplet PCR.<br />Results: In xenograft models, osimertinib significantly inhibited tumor growth, however, as expected, in 50% of mice drug-resistance developed. A combination of osimertinib with pemetrexed or cisplatin prevented or at least delayed the onset of resistance. Interestingly, such combinations increased the fraction of fibrotic tissue and exerted a long-lasting activity after stopping therapy. In vitro studies demonstrated the stronger efficacy of the combination over the single treatments in inhibiting cell proliferation and inducing cell death in PC9T790M cells as well as in T790M negative PC9 and HCC827 cell lines, suggesting the potential role of this strategy also as first-line treatment. Finally, we demonstrated that osimertinib resistant clones, either derived from resistant tumors or generated in vitro, were less sensitive to pemetrexed prompting to use a chemotherapy regimen non-containing pemetrexed in patients after progression to osimertinib treatment.<br />Conclusions: Our results identify a combination between osimertinib and pemetrexed or cisplatin potentially useful in the treatment of EGFR-mutated NSCLC patients, which might delay the appearance of osimertinib resistance with long-lasting effects.
- Subjects :
- Acrylamides pharmacology
Aniline Compounds pharmacology
Animals
Carcinoma, Non-Small-Cell Lung genetics
Cell Line, Tumor
Cell Proliferation drug effects
Cell Survival drug effects
Cisplatin pharmacology
Drug Resistance, Neoplasm drug effects
Drug Synergism
ErbB Receptors antagonists & inhibitors
ErbB Receptors genetics
Female
Gene Expression Regulation, Neoplastic drug effects
Humans
Lung Neoplasms genetics
Mice
Mutation
Pemetrexed pharmacology
Xenograft Model Antitumor Assays
Acrylamides administration & dosage
Aniline Compounds administration & dosage
Carcinoma, Non-Small-Cell Lung drug therapy
Cisplatin administration & dosage
Lung Neoplasms drug therapy
Pemetrexed administration & dosage
Subjects
Details
- Language :
- English
- ISSN :
- 1756-9966
- Volume :
- 38
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- Journal of experimental & clinical cancer research : CR
- Publication Type :
- Academic Journal
- Accession number :
- 31138260
- Full Text :
- https://doi.org/10.1186/s13046-019-1240-x