Back to Search Start Over

Bioengineered silver nanoparticles capped with bovine serum albumin and its anticancer and apoptotic activity against breast, bone and intestinal colon cancer cell lines.

Authors :
Majeed S
Aripin FHB
Shoeb NSB
Danish M
Ibrahim MNM
Hashim R
Source :
Materials science & engineering. C, Materials for biological applications [Mater Sci Eng C Mater Biol Appl] 2019 Sep; Vol. 102, pp. 254-263. Date of Electronic Publication: 2019 Apr 13.
Publication Year :
2019

Abstract

The aim of the current study was to biosynthesize the silver nanoparticles (AgNPs) from the bacterial strain of Bacillus cereus (ATCC 14579) extracellularly. When bacterial extract was challenged with 1 mM silver nitrate (AgNO3) the color of the extract changed into brown confirms the formation of nanoparticles. These nanoparticles were capped with bovine serum albumin (BSA). UV- visible spectroscopy showed the absorption peak at 420 nm indicates the formation of AgNPs. Fourier Infra -red (FTIR) attenuated total reflection (ATR) spectroscopy showed amide and amine group associated with AgNPs that stabilizes the nanoparticles. Energy dispersive x-ray spectroscopy (EDX) showed a strong peak of silver confirms the presence of silver. Thermo gravimetric analysis (TGA) analysis was used to determine the protein degradation showed less protein degradation at higher temperature confirms the stability of nanoparticles. Transmission electron microscopy (TEM) showed the AgNPs are well dispersed and spherical, and 5.37 nm to 17.19 whereas albumin coated nanoparticles are size ranges from 11.26 nm to 23.85 nm. The anticancer effect of capped AgNPs (cAgNPs) showed the IC50 value against breast cancer MCF-7 at 80 μg/mL, intestinal colon cancer HCT- 116 60 μg/mL, and bone cancer osteosarcoma MG-63 cell line80 μg/mL while against normal fibroblast cells 3T3 cells showed the IC50 value at 140 μg/mL. Lactate dehydrogenase assay (LDH) showed higher toxicity on MCF-7, HCT-116, and MG-63 cells. The apoptotic study clearly showed the blebbing of membrane, chromatin condensation due to the production of reactive oxygen species (ROS) by ethidium bromide and acridine orange dual staining method. The DNA analysis showed the complete fragmentation of the DNA of treated cells when compared with control cells.<br /> (Copyright © 2019 Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1873-0191
Volume :
102
Database :
MEDLINE
Journal :
Materials science & engineering. C, Materials for biological applications
Publication Type :
Academic Journal
Accession number :
31146998
Full Text :
https://doi.org/10.1016/j.msec.2019.04.041