Back to Search Start Over

Interactions between anaerobic ammonium- and methane-oxidizing microorganisms in a laboratory-scale sequencing batch reactor.

Authors :
Stultiens K
Cruz SG
van Kessel MAHJ
Jetten MSM
Kartal B
Op den Camp HJM
Source :
Applied microbiology and biotechnology [Appl Microbiol Biotechnol] 2019 Aug; Vol. 103 (16), pp. 6783-6795. Date of Electronic Publication: 2019 Jun 21.
Publication Year :
2019

Abstract

The reject water of anaerobic digestors still contains high levels of methane and ammonium that need to be treated before these effluents can be discharged to surface waters. Simultaneous anaerobic methane and ammonium oxidation performed by nitrate/nitrite-dependent anaerobic methane-oxidizing(N-damo) microorganisms and anaerobic ammonium-oxidizing(anammox) bacteria is considered a potential solution to this challenge. Here, a stable coculture of N-damo archaea, N-damo bacteria, and anammox bacteria was obtained in a sequencing batch reactor fed with methane, ammonium, and nitrite. Nitrite and ammonium removal rates of up to 455 mg N-NO <subscript>2</subscript> <superscript>-</superscript>  L <superscript>-1</superscript>  day <superscript>-1</superscript> and 228 mg N-NH <subscript>4</subscript> <superscript>+</superscript>  L <superscript>-1</superscript> were reached. All nitrate produced by anammox bacteria (57 mg N-NO <subscript>3</subscript> <superscript>-</superscript>  L <superscript>-1</superscript>  day <superscript>-1</superscript> ) was consumed, leading to a nitrogen removal efficiency of 97.5%. In the nitrite and ammonium limited state, N-damo and anammox bacteria each constituted about 30-40% of the culture and were separated as granules and flocs in later stages of the reactor operation. The N-damo archaea increased up to 20% and mainly resided in the granular biomass with their N-damo bacterial counterparts. About 70% of the nitrite in the reactor was removed via the anammox process, and batch assays confirmed that anammox activity in the reactor was close to its maximal potential activity. In contrast, activity of N-damo bacteria was much higher in batch, indicating that these bacteria were performing suboptimally in the sequencing batch reactor, and would probably be outcompeted by anammox bacteria if ammonium was supplied in excess. Together these results indicate that the combination of N-damo and anammox can be implemented for the removal of methane at the expense of nitrite and nitrate in future wastewater treatment systems.

Details

Language :
English
ISSN :
1432-0614
Volume :
103
Issue :
16
Database :
MEDLINE
Journal :
Applied microbiology and biotechnology
Publication Type :
Academic Journal
Accession number :
31227868
Full Text :
https://doi.org/10.1007/s00253-019-09976-9