Back to Search Start Over

Multifunctional Piezoelectric Heterostructure of BaTiO 3 @Graphene: Decomplexation of Cu-EDTA and Recovery of Cu.

Authors :
Pan M
Zhang C
Wang J
Chew JW
Gao G
Pan B
Source :
Environmental science & technology [Environ Sci Technol] 2019 Jul 16; Vol. 53 (14), pp. 8342-8351. Date of Electronic Publication: 2019 Jun 27.
Publication Year :
2019

Abstract

About 3.93 billion tons of wastewater containing heavy metal complexes are discharged (e.g., from the electroplating industry) every year in China alone. It is challenging to appropriately treat such wastewaters. Here, a multifunctional composite nanowires BaTiO <subscript>3</subscript> @graphene was designed based on Comsol simulations and made into 3D millimeter-sphere in order to facilitate practical application. Results indicate 100% of Cu-EDTA was decomplexed in situ via piezoelectric potential by BaTiO <subscript>3</subscript> @graphene. Notably, the addition of graphene sharply increased the surface potential (from 19.8 ± 0.97 to 96.8 ± 1.48 mV) of BaTiO <subscript>3</subscript> @graphene by its flexoelectric effect then effectively promoted piezoelectric electrons to be separated and transferred, which favors the piezoelectric catalysis. Moreover, the released Cu(II) from Cu-EDTA decomplexation were recovered simultaneously via the interaction on graphene groups. This method efficiently recovered Cu(II) to avoid the consumption of massive chemical reagents and the generation of secondary hazardous solid waste containing heavy metal ions, compared with the conventional oxidative decomplexation/precipitation strategy for heavy metal complexes removal. Piezoelectric catalysis paves a new possibility for advanced oxidation in wastewater treatment.

Details

Language :
English
ISSN :
1520-5851
Volume :
53
Issue :
14
Database :
MEDLINE
Journal :
Environmental science & technology
Publication Type :
Academic Journal
Accession number :
31246427
Full Text :
https://doi.org/10.1021/acs.est.9b02355