Back to Search
Start Over
Dietary fatty acid profile influences circulating and tissue fatty acid ethanolamide concentrations in a tissue-specific manner in male Syrian hamsters.
- Source :
-
Biochimica et biophysica acta. Molecular and cell biology of lipids [Biochim Biophys Acta Mol Cell Biol Lipids] 2019 Nov; Vol. 1864 (11), pp. 1563-1579. Date of Electronic Publication: 2019 Jul 10. - Publication Year :
- 2019
-
Abstract
- Background: The discovery of N‑acylethanolamines (NAEs) has prompted an increase in research aimed at understanding their biological roles including regulation of appetite and energy metabolism. However, a knowledge gap remains to understand the effect of dietary components on NAE levels, in particular, heterogeneity in dietary fatty acid (DFA) profile, on NAE levels across various organs.<br />Objective: To identify and elucidate the impact of diet on NAE levels in seven different tissues/organs of male hamsters, with the hypothesis that DFA will act as precursors for NAE synthesis in golden Syrian male hamsters.<br />Method: A two-month feeding trial was performed, wherein hamsters were fed various dietary oil blends with different composition of 18-C fatty acid (FA).<br />Results: DFA directly influences tissue FA and NAE levels. After C18:1n9-enriched dietary treatments, marked increases were observed in duodenal C18:1n9 and oleoylethanolamide (OEA) concentrations. Among all tissues; adipose tissue brown, adipose tissue white, brain, heart, intestine-duodenum, intestine-jejunum, and liver, a negative correlation was observed between gut-brain OEA concentrations and body weight.<br />Conclusion: DFA composition influences FA and NAE levels across all tissues, leading to significant shifts in intestinal-brain OEA concentrations. The endogenously synthesized increased OEA levels in these tissues enable the gut-brain-interrelationship. Henceforth, we summarize that the brain transmits anorexic properties mediated via neuronal signalling, which may contribute to the maintenance of healthy body weight. Thus, the benefits of OEA can be enhanced by the inclusion of C18:1n9-enriched diets, pointing to the possible nutritional use of this naturally occurring bioactive lipid-amide in the management of obesity.<br /> (Copyright © 2019. Published by Elsevier B.V.)
- Subjects :
- Acylation
Adipose Tissue metabolism
Animal Feed analysis
Animals
Brain metabolism
Cricetinae blood
Cricetinae metabolism
Endocannabinoids analysis
Endocannabinoids blood
Endocannabinoids metabolism
Energy Metabolism
Ethanolamines analysis
Ethanolamines blood
Fatty Acids analysis
Fatty Acids blood
Intestinal Mucosa metabolism
Male
Mesocricetus
Myocardium metabolism
Oleic Acids analysis
Oleic Acids blood
Oleic Acids metabolism
Dietary Fats metabolism
Ethanolamines metabolism
Fatty Acids metabolism
Subjects
Details
- Language :
- English
- ISSN :
- 1879-2618
- Volume :
- 1864
- Issue :
- 11
- Database :
- MEDLINE
- Journal :
- Biochimica et biophysica acta. Molecular and cell biology of lipids
- Publication Type :
- Academic Journal
- Accession number :
- 31301433
- Full Text :
- https://doi.org/10.1016/j.bbalip.2019.07.002