Back to Search Start Over

Primary HIV-1 Strains Use Nef To Downmodulate HLA-E Surface Expression.

Authors :
van Stigt Thans T
Akko JI
Niehrs A
Garcia-Beltran WF
Richert L
Stürzel CM
Ford CT
Li H
Ochsenbauer C
Kappes JC
Hahn BH
Kirchhoff F
Martrus G
Sauter D
Altfeld M
Hölzemer A
Source :
Journal of virology [J Virol] 2019 Sep 30; Vol. 93 (20). Date of Electronic Publication: 2019 Sep 30 (Print Publication: 2019).
Publication Year :
2019

Abstract

Human immunodeficiency virus type 1 (HIV-1) has evolved elaborate ways to evade immune cell recognition, including downregulation of classical HLA class I (HLA-I) from the surfaces of infected cells. Recent evidence identified HLA-E, a nonclassical HLA-I, as an important part of the antiviral immune response to HIV-1. Changes in HLA-E surface levels and peptide presentation can prompt both CD8 <superscript>+</superscript> T-cell and natural killer (NK) cell responses to viral infections. Previous studies reported unchanged or increased HLA-E levels on HIV-1-infected cells. Here, we examined HLA-E surface levels following infection of CD4 <superscript>+</superscript> T cells with primary HIV-1 strains and observed that a subset downregulated HLA-E. Two primary strains of HIV-1 that induced the strongest reduction in surface HLA-E expression were chosen for further testing. Expression of single Nef or Vpu proteins in a T-cell line, as well as tail swap experiments exchanging the cytoplasmic tail of HLA-A2 with that of HLA-E, demonstrated that Nef modulated HLA-E surface levels and targeted the cytoplasmic tail of HLA-E. Furthermore, infection of primary CD4 <superscript>+</superscript> T cells with HIV-1 mutants showed that a lack of functional Nef (and Vpu to some extent) impaired HLA-E downmodulation. Taken together, the results of this study demonstrate for the first time that HIV-1 can downregulate HLA-E surface levels on infected primary CD4 <superscript>+</superscript> T cells, potentially rendering them less vulnerable to CD8 <superscript>+</superscript> T-cell recognition but at increased risk of NKG2A <superscript>+</superscript> NK cell killing. IMPORTANCE For almost two decades, it was thought that HIV-1 selectively downregulated the highly expressed HLA-I molecules HLA-A and HLA-B from the cell surface in order to evade cytotoxic-T-cell recognition, while leaving HLA-C and HLA-E molecules unaltered. It was stipulated that HIV-1 infection thereby maintained inhibition of NK cells via inhibitory receptors that bind HLA-C and HLA-E. This concept was recently revised when a study showed that primary HIV-1 strains reduce HLA-C surface levels, whereas the cell line-adapted HIV-1 strain NL4-3 lacks this ability. Here, we demonstrate that infection with distinct primary HIV-1 strains results in significant downregulation of surface HLA-E levels. Given the increasing evidence for HLA-E as an important modulator of CD8 <superscript>+</superscript> T-cell and NKG2A <superscript>+</superscript> NK cell functions, this finding has substantial implications for future immunomodulatory approaches aimed at harnessing cytotoxic cellular immunity against HIV.<br /> (Copyright © 2019 American Society for Microbiology.)

Details

Language :
English
ISSN :
1098-5514
Volume :
93
Issue :
20
Database :
MEDLINE
Journal :
Journal of virology
Publication Type :
Academic Journal
Accession number :
31375574
Full Text :
https://doi.org/10.1128/JVI.00719-19