Back to Search
Start Over
Glia-neuron interactions underlie state transitions to generalized seizures.
- Source :
-
Nature communications [Nat Commun] 2019 Aug 23; Vol. 10 (1), pp. 3830. Date of Electronic Publication: 2019 Aug 23. - Publication Year :
- 2019
-
Abstract
- Brain activity and connectivity alter drastically during epileptic seizures. The brain networks shift from a balanced resting state to a hyperactive and hypersynchronous state. It is, however, less clear which mechanisms underlie the state transitions. By studying neural and glial activity in zebrafish models of epileptic seizures, we observe striking differences between these networks. During the preictal period, neurons display a small increase in synchronous activity only locally, while the gap-junction-coupled glial network was highly active and strongly synchronized across large distances. The transition from a preictal state to a generalized seizure leads to an abrupt increase in neural activity and connectivity, which is accompanied by a strong alteration in glia-neuron interactions and a massive increase in extracellular glutamate. Optogenetic activation of glia excites nearby neurons through the action of glutamate and gap junctions, emphasizing a potential role for glia-glia and glia-neuron connections in the generation of epileptic seizures.
- Subjects :
- Animals
Animals, Genetically Modified
Brain cytology
Brain diagnostic imaging
Disease Models, Animal
Gap Junctions physiology
Glutamic Acid metabolism
Humans
Microscopy, Confocal
Nerve Net cytology
Nerve Net physiopathology
Neuroglia physiology
Neurons physiology
Optical Imaging
Optogenetics
Patch-Clamp Techniques
Zebrafish
Brain physiopathology
Cell Communication
Cortical Excitability physiology
Epilepsy physiopathology
Seizures physiopathology
Subjects
Details
- Language :
- English
- ISSN :
- 2041-1723
- Volume :
- 10
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- Nature communications
- Publication Type :
- Academic Journal
- Accession number :
- 31444362
- Full Text :
- https://doi.org/10.1038/s41467-019-11739-z