Back to Search Start Over

Glia-neuron interactions underlie state transitions to generalized seizures.

Authors :
Diaz Verdugo C
Myren-Svelstad S
Aydin E
Van Hoeymissen E
Deneubourg C
Vanderhaeghe S
Vancraeynest J
Pelgrims R
Cosacak MI
Muto A
Kizil C
Kawakami K
Jurisch-Yaksi N
Yaksi E
Source :
Nature communications [Nat Commun] 2019 Aug 23; Vol. 10 (1), pp. 3830. Date of Electronic Publication: 2019 Aug 23.
Publication Year :
2019

Abstract

Brain activity and connectivity alter drastically during epileptic seizures. The brain networks shift from a balanced resting state to a hyperactive and hypersynchronous state. It is, however, less clear which mechanisms underlie the state transitions. By studying neural and glial activity in zebrafish models of epileptic seizures, we observe striking differences between these networks. During the preictal period, neurons display a small increase in synchronous activity only locally, while the gap-junction-coupled glial network was highly active and strongly synchronized across large distances. The transition from a preictal state to a generalized seizure leads to an abrupt increase in neural activity and connectivity, which is accompanied by a strong alteration in glia-neuron interactions and a massive increase in extracellular glutamate. Optogenetic activation of glia excites nearby neurons through the action of glutamate and gap junctions, emphasizing a potential role for glia-glia and glia-neuron connections in the generation of epileptic seizures.

Details

Language :
English
ISSN :
2041-1723
Volume :
10
Issue :
1
Database :
MEDLINE
Journal :
Nature communications
Publication Type :
Academic Journal
Accession number :
31444362
Full Text :
https://doi.org/10.1038/s41467-019-11739-z