Back to Search Start Over

The HBCDs biodegradation using a Pseudomonas strain and its application in soil phytoremediation.

Authors :
Huang L
Wang W
Shah SB
Hu H
Xu P
Tang H
Source :
Journal of hazardous materials [J Hazard Mater] 2019 Dec 15; Vol. 380, pp. 120833. Date of Electronic Publication: 2019 Jun 29.
Publication Year :
2019

Abstract

Hexabromocyclododecanes (HBCDs) are the second-most widely used brominated flame retardants. They cause inappropriate antidiuretic hormone syndrome and can induce cancer. However, little information is available about bacterial degradation of HBCDs. In this study, HBCDs (α-, β- and γ-HBCD) degrading strain Pseudomonas aeruginosa HS9 was isolated, identified, and characterized. The strain HS9 could remove 69% (± 0.05%) of 1.7 mg/L HBCDs in 14 days. Based on identification of metabolites, this bacterium could oxidize HBCDs by two pathways. In the first, HBCDs are sequentially debromized to tetrabromocyclododecene, dibromocyclododecadiene, and then debromized once more to cis, trans, trans-1, 5, 9-cyclododecatriene (CDT). After that, CDT is then oxidized to 1,2-epoxy-5,9-cyclododecadiene. The second identified pathway is a simultaneous debrominating and hydroxylating process based on the detection of 2,5,6,9,10-pentabromocyclododecanols, which were newly identified. The strain's effects on plant-maize growth were tested and bioremediation evaluation trials were performed. The addition of strain HS9 could decrease HBCDs of 4.08 mg/g (87.6% removed) and 0.1 mg/g (25% removed) in soil and plants, respectively. Microbial diversity analysis shows that the addition of strain HS9 can promote the abundance of plant-beneficial bacteria, such as Methylobacillus, Nitrosomonas, Plancoccus, Bacillus, and Rhodococcus. The results provide insights for the bioremediation of HBCDs-contaminated soils.<br /> (Copyright © 2019 Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1873-3336
Volume :
380
Database :
MEDLINE
Journal :
Journal of hazardous materials
Publication Type :
Academic Journal
Accession number :
31446271
Full Text :
https://doi.org/10.1016/j.jhazmat.2019.120833