Back to Search
Start Over
Plasma-Enhanced Atomic Layer Deposition of Nanostructured Gold Near Room Temperature.
- Source :
-
ACS applied materials & interfaces [ACS Appl Mater Interfaces] 2019 Oct 09; Vol. 11 (40), pp. 37229-37238. Date of Electronic Publication: 2019 Sep 26. - Publication Year :
- 2019
-
Abstract
- A plasma-enhanced atomic layer deposition (PE-ALD) process to deposit metallic gold is reported, using the previously reported Me <subscript>3</subscript> Au(PMe <subscript>3</subscript> ) precursor with H <subscript>2</subscript> plasma as the reactant. The process has a deposition window from 50 to 120 °C with a growth rate of 0.030 ± 0.002 nm per cycle on gold seed layers, and it shows saturating behavior for both the precursor and reactant exposure. X-ray photoelectron spectroscopy measurements show that the gold films deposited at 120 °C are of higher purity than the previously reported ones (<1 at. % carbon and oxygen impurities and <0.1 at. % phosphorous). A low resistivity value was obtained (5.9 ± 0.3 μΩ cm), and X-ray diffraction measurements confirm that films deposited at 50 and 120 °C are polycrystalline. The process forms gold nanoparticles on oxide surfaces, which coalesce into wormlike nanostructures during deposition. Nanostructures grown at 120 °C are evaluated as substrates for free-space surface-enhanced Raman spectroscopy (SERS) and exhibit an excellent enhancement factor that is without optimization, only one order of magnitude weaker than state-of-the-art gold nanodome substrates. The reported gold PE-ALD process therefore offers a deposition method to create SERS substrates that are template-free and does not require lithography. Using this process, it is possible to deposit nanostructured gold layers at low temperatures on complex three-dimensional (3D) substrates, opening up opportunities for the application of gold ALD in flexible electronics, heterogeneous catalysis, or the preparation of 3D SERS substrates.
Details
- Language :
- English
- ISSN :
- 1944-8252
- Volume :
- 11
- Issue :
- 40
- Database :
- MEDLINE
- Journal :
- ACS applied materials & interfaces
- Publication Type :
- Academic Journal
- Accession number :
- 31523948
- Full Text :
- https://doi.org/10.1021/acsami.9b10848