Back to Search Start Over

Classification and Diagnosis of Thyroid Carcinoma Using Reinforcement Residual Network with Visual Attention Mechanisms in Ultrasound Images.

Authors :
Zhang Y
Source :
Journal of medical systems [J Med Syst] 2019 Oct 14; Vol. 43 (11), pp. 323. Date of Electronic Publication: 2019 Oct 14.
Publication Year :
2019

Abstract

How to differentiate thyroid cancer nodules from a large number of benign nodules is always a challenging subject for clinicians. This paper proposes a novel Sal-deel network model to achieve the classification and diagnosis of thyroid cancer, which can simulate visual attention mechanism. The Sal-deep network introduces saliency map as an additional information on the deep residual network, which selectively enhances the feature extracted from different regions according to the mask map. Sal-deep network can work effectively for the benchmark networks with different data sets and different structures, and it is a universal network model. Sal-deep network increases the complexity of the network, but improves the efficiency of the network. A large number of qualitative and quantitative experiments show that our improved network is superior to other existing deep models in terms of classification accuracy rate and Recall, which is suitable for clinical application.

Details

Language :
English
ISSN :
1573-689X
Volume :
43
Issue :
11
Database :
MEDLINE
Journal :
Journal of medical systems
Publication Type :
Academic Journal
Accession number :
31612276
Full Text :
https://doi.org/10.1007/s10916-019-1448-5