Back to Search Start Over

Plant-microbe-soil fertility interaction impacts performance of a Bacillus-containing bioproduct on bell pepper.

Authors :
Huang P
Xu J
Kloepper JW
Source :
Journal of basic microbiology [J Basic Microbiol] 2020 Jan; Vol. 60 (1), pp. 27-36. Date of Electronic Publication: 2019 Oct 16.
Publication Year :
2020

Abstract

Limited information is available on the performance of plant growth-promoting inoculants or bioproducts under different soil nutritional or fertility conditions. Consequently, the objective of this study was to evaluate the effects of a commercially available Bacillus-containing bioproduct, Microlife Abundance, at concentrations of 5.5 and 6.5 log cfu/ml on early growth, fertilizer use-efficiency, and fruit yield of bell pepper (Capsicum annuum L.) under two different soil fertility conditions (25% and 100% recommended N rates). Two pot experiments were conducted with bell pepper: (a) a 4-week-long early growth test with inoculant treatments applied once at transplanting; and (b) a 13-week-long yield test with inoculant treatments applied at transplanting and again at first blossom-set. Results from the early growth test indicated that at both N fertilization levels, applying Abundance once at transplanting at 6.5 log cfu/ml rather than 5.5 log cfu/ml significantly increased root dry weight, total root length, root volume, root surface area, and total length of very fine roots compared with the noninoculated control by 20%, 13%, 17%, 15%, and 12%, respectively. In contrast to the early growth, results from the yield test showed that only at the 100% recommended N rate, applying Abundance twice at both concentrations significantly enhanced N fertilizer use-efficiency and marketable yield of bell pepper over the noninoculated control by 34% (5.5 log cfu/ml) and 30% (6.5 log cfu/ml). Therefore, the efficacy of the Bacillus-containing bioproduct Abundance in enhancing fertilizer use-efficiency and marketable yield of bell pepper varied between soil nutritional conditions, but the early growth promotion effect of Abundance did not. Our results also demonstrate that selected microbial-based bioproducts, like Abundance, can be compatible with chemical fertilizers to enhance fertilizer use-efficiency and crop yields, but cannot be used as complete substitutes for chemical fertilizers.<br /> (© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.)

Details

Language :
English
ISSN :
1521-4028
Volume :
60
Issue :
1
Database :
MEDLINE
Journal :
Journal of basic microbiology
Publication Type :
Academic Journal
Accession number :
31617947
Full Text :
https://doi.org/10.1002/jobm.201900435